注目の論文一覧

各カテゴリ上位30論文までを表示しています

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)

5
Unlocking Understanding: An Investigation of Multimodal Communication in Virtual Reality Collaboration
Ryan Ghamandi (University of Central Florida, Orlando, Florida, United States)Ravi Kiran Kattoju (University of Central Florida, Orlando, Florida, United States)Yahya Hmaiti (University of Central Florida, Orlando, Florida, United States)Mykola Maslych (University of Central Florida, Orlando, Florida, United States)Eugene Matthew. Taranta (University of Central Florida, Orlando, Florida, United States)Ryan P. McMahan (University of Central Florida, Orlando, Florida, United States)Joseph LaViola (University of Central Florida, Orlando, Florida, United States)
Communication in collaboration, especially synchronous, remote communication, is crucial to the success of task-specific goals. Insufficient or excessive forms of communication may lead to detrimental effects on task performance while increasing mental fatigue. However, identifying which combinations of communication modalities provide the most efficient transfer of information in collaborative settings will greatly improve collaboration. To investigate this, we developed a remote, synchronous, asymmetric VR collaborative assembly task application, where users play the role of either mentor or mentee, and were exposed to different combinations of three communication modalities: voice, gestures, and gaze. Through task-based experiments with 25 pairs of participants (50 individuals), we evaluated quantitative and qualitative data and found that gaze did not differ significantly from multiple combinations of communication modalities. Our qualitative results indicate that mentees experienced more difficulty and frustration in completing tasks than mentors, with both types of users preferring all three modalities to be present.
4
DiaryMate: Understanding User Perceptions and Experience in Human-AI Collaboration for Personal Journaling
Taewan Kim (KAIST, Daejeon, Korea, Republic of)Donghoon Shin (University of Washington, Seattle, Washington, United States)Young-Ho Kim (NAVER AI Lab, Seongnam, Gyeonggi, Korea, Republic of)Hwajung Hong (KAIST, Deajeon, Korea, Republic of)
With their generative capabilities, large language models (LLMs) have transformed the role of technological writing assistants from simple editors to writing collaborators. Such a transition emphasizes the need for understanding user perception and experience, such as balancing user intent and the involvement of LLMs across various writing domains in designing writing assistants. In this study, we delve into the less explored domain of personal writing, focusing on the use of LLMs in introspective activities. Specifically, we designed DiaryMate, a system that assists users in journal writing with LLM. Through a 10-day field study (N=24), we observed that participants used the diverse sentences generated by the LLM to reflect on their past experiences from multiple perspectives. However, we also observed that they are over-relying on the LLM, often prioritizing its emotional expressions over their own. Drawing from these findings, we discuss design considerations when leveraging LLMs in a personal writing practice.
4
Signs of the Smart City: Exploring the Limits and Opportunities of Transparency
Eric Corbett (Google Research, New York, New York, United States)Graham Dove (New York University, New York, New York, United States)
This paper reports on a research through design (RtD) inquiry into public perceptions of transparency of Internet of Things (IoT) sensors increasingly deployed within urban neighborhoods as part of smart city programs. In particular, we report on the results of three participatory design workshops during which 40 New York City residents used physical signage as a medium for materializing transparency concerns about several sensors. We found that people’s concerns went beyond making sensors more transparent but instead sought to reveal the technology’s interconnected social, political, and economic processes. Building from these findings, we highlight the opportunities to move from treating transparency as an object to treating it as an ongoing activity. We argue that this move opens opportunities for designers and policy-makers to provide meaningful and actionable transparency of smart cities.
4
Tagnoo: Enabling Smart Room-Scale Environments with RFID-Augmented Plywood
Yuning Su (Simon Fraser University, Burnaby, British Columbia, Canada)Tingyu Zhang (Simon Fraser University, Burnaby, British Columbia, Canada)Jiuen Feng (University of Science and Technology of China, Hefei, Anhui, China)Yonghao Shi (Simon Fraser University, Burnaby, British Columbia, Canada)Xing-Dong Yang (Simon Fraser University, Burnaby, British Columbia, Canada)Te-Yen Wu (Florida State University, Tallahassee, Florida, United States)
Tagnoo is a computational plywood augmented with RFID tags, aimed at empowering woodworkers to effortlessly create room-scale smart environments. Unlike existing solutions, Tagnoo does not necessitate technical expertise or disrupt established woodworking routines. This battery-free and cost-effective solution seamlessly integrates computation capabilities into plywood, while preserving its original appearance and functionality. In this paper, we explore various parameters that can influence Tagnoo's sensing performance and woodworking compatibility through a series of experiments. Additionally, we demonstrate the construction of a small office environment, comprising a desk, chair, shelf, and floor, all crafted by an experienced woodworker using conventional tools such as a table saw and screws while adhering to established construction workflows. Our evaluation confirms that the smart environment can accurately recognize 18 daily objects and user activities, such as a user sitting on the floor or a glass lunchbox placed on the desk, with over 90% accuracy.
4
Robot-Assisted Decision-Making: Unveiling the Role of Uncertainty Visualisation and Embodiment
Sarah Schömbs (The University of Melbourne, Melbourne, VIC, Australia)Saumya Pareek (University of Melbourne, Melbourne, Victoria, Australia)Jorge Goncalves (University of Melbourne, Melbourne, Australia)Wafa Johal (University of Melbourne, Melbourne, VIC, Australia)
Robots are embodied agents that act under several sources of uncertainty. When assisting humans in a collaborative task, robots need to communicate their uncertainty to help inform decisions. In this study, we examine the use of visualising a robot’s uncertainty in a high-stakes assisted decision-making task. In particular, we explore how different modalities of uncertainty visualisations (graphical display vs. the robot’s embodied behaviour) and confidence levels (low, high, 100%) conveyed by a robot affect the human decision-making and perception during a collaborative task. Our results show that these visualisations significantly impact how participants arrive to their decision as well as how they perceive the robot’s transparency across the different confidence levels. We highlight potential trade-offs and offer implications for robot-assisted decision-making. Our work contributes empirical insights on how humans make use of uncertainty visualisations conveyed by a robot in a critical robot-assisted decision-making scenario.
4
Personalizing Privacy Protection With Individuals' Regulatory Focus: Would You Preserve or Enhance Your Information Privacy?
Reza Ghaiumy Anaraky (New York University, New York City, New York, United States)Yao Li (University of Central Florida, Orlando, Florida, United States)Hichang Cho (National University of Singapore, Singapore, Singapore)Danny Yuxing Huang (New York University, New York, New York, United States)Kaileigh Angela Byrne (Clemson University, Clemson, South Carolina, United States)Bart Knijnenburg (Clemson University, Clemson, South Carolina, United States)Oded Nov (New York University, New York, New York, United States)
In this study, we explore the effectiveness of persuasive messages endorsing the adoption of a privacy protection technology (IoT Inspector) tailored to individuals' regulatory focus (promotion or prevention). We explore if and how regulatory fit (i.e., tuning the goal-pursuit mechanism to individuals' internal regulatory focus) can increase persuasion and adoption. We conducted a between-subject experiment (N = 236) presenting participants with the IoT Inspector in gain ("Privacy Enhancing Technology"---PET) or loss ("Privacy Preserving Technology"---PPT) framing. Results show that the effect of regulatory fit on adoption is mediated by trust and privacy calculus processes: prevention-focused users who read the PPT message trust the tool more. Furthermore, privacy calculus favors using the tool when promotion-focused individuals read the PET message. We discuss the contribution of understanding the cognitive mechanisms behind regulatory fit in privacy decision-making to support privacy protection.
4
The Social Journal: Investigating Technology to Support and Reflect on Social Interactions
Sophia Sakel (LMU Munich, Munich, Germany)Tabea Blenk (LMU Munich, Munich, Germany)Albrecht Schmidt (LMU Munich, Munich, Germany)Luke Haliburton (LMU Munich, Munich, Germany)
Social interaction is a crucial part of what it means to be human. Maintaining a healthy social life is strongly tied to positive outcomes for both physical and mental health. While we use personal informatics data to reflect on many aspects of our lives, technology-supported reflection for social interactions is currently under-explored. To address this, we first conducted an online survey (N=124) to understand how users want to be supported in their social interactions. Based on this, we designed and developed an app for users to track and reflect on their social interactions and deployed it in the wild for two weeks (N=25). Our results show that users are interested in tracking meaningful in-person interactions that are currently untraced and that an app can effectively support self-reflection on social interaction frequency and social load. We contribute insights and concrete design recommendations for technology-supported reflection for social interaction.
4
Observer Effect in Social Media Use
Koustuv Saha (University of Illinois at Urbana-Champaign, Urbana, Illinois, United States)Pranshu Gupta (Georgia Institute of Technology, Atlanta, Georgia, United States)Gloria Mark (University of California, Irvine, Irvine, California, United States)Emre Kiciman (Microsoft Research, Redmond, Washington, United States)Munmun De Choudhury (Georgia Institute of Technology, Atlanta, Georgia, United States)
While social media data is a valuable source for inferring human behavior, its in-practice utility hinges on extraneous factors. Notable is the ``observer effect,'' where awareness of being monitored can alter people's social media use. We present a causal-inference study to examine this phenomenon on the longitudinal Facebook use of 300+ participants who voluntarily shared their data spanning an average of 82 months before and 5 months after study enrollment. We measured deviation from participants' expected social media use through time series analyses. Individuals with high cognitive ability and low neuroticism decreased posting immediately after enrollment, and those with high openness increased posting. The sharing of self-focused content decreased, while diverse topics emerged. We situate the findings within theories of self-presentation and self-consciousness. We discuss the implications of correcting observer effect in social media data-driven measurements, and how this phenomenon shines light on the ethics of these measurements.
4
Using the Visual Language of Comics to Alter Sensations in Augmented Reality
Arpit Bhatia (University of Copenhagen, Copenhagen, Denmark)Henning Pohl (Aalborg University, Aalborg, Denmark)Teresa Hirzle (University of Copenhagen, Copenhagen, Denmark)Hasti Seifi (Arizona State University, Tempe, Arizona, United States)Kasper Hornbæk (University of Copenhagen, Copenhagen, Denmark)
Augmented Reality (AR) excels at altering what we see but non-visual sensations are difficult to augment. To augment non-visual sensations in AR, we draw on the visual language of comic books. Synthesizing comic studies, we create a design space describing how to use comic elements (e.g., onomatopoeia) to depict non-visual sensations (e.g., hearing). To demonstrate this design space, we built eight demos, such as speed lines to make a user think they are faster and smell lines to make a scent seem stronger. We evaluate these elements in a qualitative user study (N=20) where participants performed everyday tasks with comic elements added as augmentations. All participants stated feeling a change in perception for at least one sensation, with perceived changes detected by between four participants (touch) and 15 participants (hearing). The elements also had positive effects on emotion and user experience, even when participants did not feel changes in perception.
4
Me, My Health, and My Watch: How Children with ADHD Understand Smartwatch Health Data
Elizabeth Ankrah (University of California, Irvine, Irvine, California, United States)Franceli L.. Cibrian (Chapman University, Orange, California, United States)Lucas M.. Silva (University of California, Irvine, Irvine, California, United States)Arya Tavakoulnia (University of California Irvine, Irvine, California, United States)Jesus Armando. Beltran (UCI, Irvine, California, United States)Sabrina Schuck (University of California Irvine, Irvine, California, United States)Kimberley D. Lakes (University of California Riverside, Riverside, California, United States)Gillian R. Hayes (University of California, Irvine, Irvine, California, United States)
Children with ADHD can experience a wide variety of challenges related to self-regulation, which can lead to poor educational, health, and wellness outcomes. Technological interventions, such as mobile and wearable health systems, can support data collection and reflection about health status. However, little is known about how ADHD children interpret such data. We conducted a deployment study with 10 children, aged 10 to 15, for six weeks, during which they used a smartwatch in their homes. Results from observations and interviews during this study indicate that children with ADHD can interpret their own health data, particularly at the moment. However, as ADHD children develop more autonomy, smartwatch systems may require alternatives for data reflection that are interpretable and actionable for them. This work contributes to the scholarly discourse around health data visualization, particularly in considering implications for the design of health technologies for children with ADHD.
4
MOSion: Gaze Guidance with Motion-triggered Visual Cues by Mosaic Patterns
Arisa Kohtani (Tokyo Institute of Technology, Tokyo, Japan)Shio Miyafuji (Tokyo Institute of Technology, Tokyo, Japan)Keishiro Uragaki (Aoyama Gakuin University, Tokyo, Japan)Hidetaka Katsuyama (Tokyo Institute of Technology, Tokyo, Japan)Hideki Koike (Tokyo Institute of Technology, Tokyo, Japan)
We propose a gaze-guiding method called MOSion to adjust the guiding strength reacted to observers’ motion based on a high-speed projector and the afterimage effect in the human vision system. Our method decomposes the target area into mosaic patterns to embed visual cues in the perceived images. The patterns can only direct the attention of the moving observers to the target area. The stopping observer can see the original image with little distortion because of light integration in the visual perception. The pre computation of the patterns provides the adaptive guiding effect without tracking devices and computational costs depending on the movements. The evaluation and the user study show that the mosaic decomposition enhances the perceived saliency with a few visual artifacts, especially in moving conditions. Our method embedded in white lights works in various situations such as planar posters, advertisements, and curved objects.
4
Predicting the Noticeability of Dynamic Virtual Elements in Virtual Reality
Zhipeng Li (Carnegie Mellon University, Pittsburgh, Pennsylvania, United States)Yi Fei Cheng (Carnegie Mellon University, Pittsburgh, Pennsylvania, United States)Yukang Yan (Carnegie Mellon University, Pittsburgh, Pennsylvania, United States)David Lindlbauer (Carnegie Mellon University, Pittsburgh, Pennsylvania, United States)
While Virtual Reality (VR) systems can present virtual elements such as notifications anywhere, designing them so they are not missed by or distracting to users is highly challenging for content creators. To address this challenge, we introduce a novel approach to predict the noticeability of virtual elements. It computes the visual saliency distribution of what users see, and analyzes the temporal changes of the distribution with respect to the dynamic virtual elements that are animated. The computed features serve as input for a long short-term memory (LSTM) model that predicts whether a virtual element will be noticed. Our approach is based on data collected from 24 users in different VR environments performing tasks such as watching a video or typing. We evaluate our approach (n = 12), and show that it can predict the timing of when users notice a change to a virtual element within 2.56 sec compared to a ground truth, and demonstrate the versatility of our approach with a set of applications. We believe that our predictive approach opens the path for computational design tools that assist VR content creators in creating interfaces that automatically adapt virtual elements based on noticeability.
3
Visual Noise Cancellation: Exploring Visual Discomfort and Opportunities for Vision Augmentations
Junlei Hong (University of Otago, Dunedin, New Zealand)Tobias Langlotz (University of Otago, Dunedin, New Zealand)Jonathan Sutton (University of Otago, Dunedin, New Zealand)Holger Regenbrecht (University of Otago, Dunedin, Otago, New Zealand)
Acoustic noise control or cancellation (ANC) is a commonplace component of modern audio headphones. ANC aims to actively mitigate disturbing environmental noise for a quieter and improved listening experience. ANC is digitally controlling frequency and amplitude characteristics of sound. Much less explored is visual noise and active visual noise control, which we address here. We first explore visual noise and scenarios in which visual noise arises based on findings from four workshops we conducted. We then introduce the concept of visual noise cancellation (VNC) and how it can be used to reduce identified effects of visual noise. In addition, we developed head-worn demonstration prototypes to practically explore the concept of active VNC with selected scenarios in a user study. Finally, we discuss the application of VNC, including vision augmentations that moderate the user's view of the environment to address perceptual needs and to provide augmented reality content.
3
Understanding Users' Interaction with Login Notifications
Philipp Markert (Ruhr University Bochum, Bochum, Germany)Leona Lassak (Ruhr University Bochum, Bochum, Germany)Maximilian Golla (CISPA Helmholtz Center for Information Security, Saarbrücken, Germany)Markus Dürmuth (Leibniz University Hannover, Hannover, Germany)
Login notifications intend to inform users about sign-ins and help them protect their accounts from unauthorized access. Notifications are usually sent if a login deviates from previous ones, potentially indicating malicious activity. They contain information like the location, date, time, and device used to sign in. Users are challenged to verify whether they recognize the login (because it was them or someone they know) or to protect their account from unwanted access. In a user study, we explore users' comprehension, reactions, and expectations of login notifications. We utilize two treatments to measure users' behavior in response to notifications sent for a login they initiated or based on a malicious actor relying on statistical sign-in information. We find that users identify legitimate logins but need more support to halt malicious sign-ins. We discuss the identified problems and give recommendations for service providers to ensure usable and secure logins for everyone.
3
Investigating Contextual Notifications to Drive Self-Monitoring in mHealth Apps for Weight Maintenance
Yu-Peng Chen (University of Florida, Gainesville, Florida, United States)Julia Woodward (University of South Florida , Tampa, Florida, United States)Dinank Bista (University of Florida, Gainesville, Florida, United States)Xuanpu Zhang (Department of CISE, University of Florida, Gainesville, Florida, United States)Ishvina Singh (University of Florida , Gainesville, Florida, United States)Oluwatomisin Obajemu (University of Florida, Gainesville, Florida, United States)Meena N. Shankar (University of Florida, Gainesville, Florida, United States)Kathryn M.. Ross (University of Florida, Gainesville, Florida, United States)Jaime Ruiz (University of Florida, Gainesville, Florida, United States)Lisa Anthony (University of Florida, Gainesville, Florida, United States)
Mobile health applications for weight maintenance offer self-monitoring as a tool to empower users to achieve health goals (e.g., losing weight); yet maintaining consistent self-monitoring over time proves challenging for users. These apps use push notifications to help increase users’ app engagement and reduce long-term attrition, but they are often ignored by users due to appearing at inopportune moments. Therefore, we analyzed whether delivering push notifications based on time alone or also considering user context (e.g., current activity) affected users’ engagement in a weight maintenance app, in a 4-week in-the-wild study with 30 participants. We found no difference in participants’ overall (across the day) self-monitoring frequency between the two conditions, but in the context-based condition, participants responded faster and more frequently to notifications, and logged their data more timely (as eating/exercising occurs). Our work informs the design of notifications in weight maintenance apps to improve their efficacy in promoting self-monitoring.
3
Metaphors in Voice User Interfaces: A Slippery Fish
Smit Desai (University of Illinois, Urbana-Champaign, Champaign, Illinois, United States)Michael Bernard. Twidale (University of Illinois at Urbana-Champaign, Urbana, Illinois, United States)
We explore a range of different metaphors used for Voice User Interfaces (VUIs) by designers, end-users, manufacturers, and researchers using a novel framework derived from semi-structured interviews and a literature review. We focus less on the well-established idea of metaphors as a way for interface designers to help novice users learn how to interact with novel technology, and more on other ways metaphors can be used. We find that metaphors people use are contextually fluid, can change with the mode of conversation, and can reveal differences in how people perceive VUIs compared to other devices. Not all metaphors are helpful, and some may be offensive. Analyzing this broader class of metaphors can help understand, perhaps even predict problems. Metaphor analysis can be a low-cost tool to inspire design creativity and facilitate complex discussions about sociotechnical issues, enabling us to spot potential opportunities and problems in the situated use of technologies.
3
Technology-Mediated Non-pharmacological Interventions for Dementia: Needs for and Challenges in Professional, Personalized and Multi-Stakeholder Collaborative Interventions
Yuling Sun (East China Normal University, Shanghai, China)Zhennan Yi (Beijing Normal University, Beijing, China)Xiaojuan Ma (Hong Kong University of Science and Technology, Hong Kong, Hong Kong)JUNYAN MAO (East China Normal University, Shanghai, China)Xin Tong (Duke Kunshan University, Kunshan, Suzhou, China)
Designing and using technologies to support Non-Pharmacological Interventions (NPI) for People with Dementia (PwD) has drawn increasing attention in HCI, with the potential expectations of higher user engagement and positive outcomes. Yet, technologies for NPI can only be valuable if practitioners successfully incorporate them into their ongoing intervention practices beyond a limited research period. Currently, we know little about how practitioners experience and perceive these technologies in practical NPI for PwD. In this paper, we investigate this question through observations of five in-person NPI activities and interviews with 11 therapists and 5 caregivers. Our findings elaborate the practical NPI workflow process and characteristics, and practitioners’ attitudes, experiences, and perceptions to technology-mediated NPI in practice. Generally, our participants emphasized practical NPI is a complex and professional practice, needing fine-grained, personalized evaluation and planning, and the practical executing process is situated, and multi-stakeholder collaborative. Yet, existing technologies often fail to consider these specific characteristics, which leads to limitations in practical effectiveness or sustainable use. Drawing on our findings, we discuss the possible implications for designing more useful and practical NPI intervention technologies.
3
A Robot Jumping the Queue: Expectations About Politeness and Power During Conflicts in Everyday Human-Robot Encounters
Franziska Babel (Linköping University, Linköping, Sweden)Robin Welsch (Aalto University, Espoo, Finland)Linda Miller (Ulm University, Ulm, Germany)Philipp Hock (Linköping University, Linköping, Sweden)Sam Thellman (Linköping University, Linköping, Sweden)Tom Ziemke (Linköping University, Linköping, Sweden)
Increasing encounters between people and autonomous service robots may lead to conflicts due to mismatches between human expectations and robot behaviour. This interactive online study (N = 335) investigated human-robot interactions at an elevator, focusing on the effect of communication and behavioural expectations on participants' acceptance and compliance. Participants evaluated a humanoid delivery robot primed as either submissive or assertive. The robot either matched or violated these expectations by using a command or appeal to ask for priority and then entering either first or waiting for the next ride. The results highlight that robots are less accepted if they violate expectations by entering first or using a command. Interactions were more effective if participants expected an assertive robot which then asked politely for priority and entered first. The findings emphasize the importance of power expectations in human-robot conflicts for the robot's evaluation and effectiveness in everyday situations.
3
MindfulDiary: Harnessing Large Language Model to Support Psychiatric Patients' Journaling
Taewan Kim (KAIST, Daejeon, Korea, Republic of)Seolyeong Bae (Gwangju Institute of Science and Technology, Gwangju, Korea, Republic of)Hyun AH Kim (NAVER Cloud, Gyeonggi-do, Korea, Republic of)Su-woo Lee (Wonkwang university hospital, iksan-si, Korea, Republic of)Hwajung Hong (KAIST, Deajeon, Korea, Republic of)Chanmo Yang (Wonkwang University Hospital, Wonkwang University, Iksan, Jeonbuk, Korea, Republic of)Young-Ho Kim (NAVER AI Lab, Seongnam, Gyeonggi, Korea, Republic of)
Large Language Models (LLMs) offer promising opportunities in mental health domains, although their inherent complexity and low controllability elicit concern regarding their applicability in clinical settings. We present MindfulDiary, an LLM-driven journaling app that helps psychiatric patients document daily experiences through conversation. Designed in collaboration with mental health professionals, MindfulDiary takes a state-based approach to safely comply with the experts' guidelines while carrying on free-form conversations. Through a four-week field study involving 28 patients with major depressive disorder and five psychiatrists, we examined how MindfulDiary facilitates patients' journaling practice and clinical care. The study revealed that MindfulDiary supported patients in consistently enriching their daily records and helped clinicians better empathize with their patients through an understanding of their thoughts and daily contexts. Drawing on these findings, we discuss the implications of leveraging LLMs in the mental health domain, bridging the technical feasibility and their integration into clinical settings.
3
Decide Yourself or Delegate - User Preferences Regarding the Autonomy of Personal Privacy Assistants in Private IoT-Equipped Environments
Karola Marky (Ruhr-University Bochum, Bochum, Germany)Alina Stöver (Technische Universität Darmstadt, Darmstadt, Germany)Sarah Prange (University of the Bundeswehr Munich, Munich, Germany)Kira Bleck (TU Darmstadt, Darmstadt, Germany)Paul Gerber (Technische Universität Darmstadt, Darmstadt, Germany)Verena Zimmermann (ETH Zürich, Zürich, Switzerland)Florian Müller (LMU Munich, Munich, Germany)Florian Alt (University of the Bundeswehr Munich, Munich, Germany)Max Mühlhäuser (TU Darmstadt, Darmstadt, Germany)
Personalized privacy assistants (PPAs) communicate privacy-related decisions of their users to Internet of Things (IoT) devices. There are different ways to implement PPAs by varying the degree of autonomy or decision model. This paper investigates user perceptions of PPA autonomy models and privacy profiles - archetypes of individual privacy needs - as a basis for PPA decisions in private environments (e.g., a friend's home). We first explore how privacy profiles can be assigned to users and propose an assignment method. Next, we investigate user perceptions in 18 usage scenarios with varying contexts, data types and number of decisions in a study with 1126 participants. We found considerable differences between the profiles in settings with few decisions. If the number of decisions gets high (> 1/h), participants exclusively preferred fully autonomous PPAs. Finally, we discuss implications and recommendations for designing scalable PPAs that serve as privacy interfaces for future IoT devices.
3
"It's a Fair Game", or Is It? Examining How Users Navigate Disclosure Risks and Benefits When Using LLM-Based Conversational Agents
Zhiping Zhang (Khoury College of Computer Sciences, Boston, Massachusetts, United States)Michelle Jia (Carnegie Mellon University, Pittsburgh, Pennsylvania, United States)Hao-Ping (Hank) Lee (Carnegie Mellon University, Pittsburgh, Pennsylvania, United States)Bingsheng Yao (Rensselaer Polytechnic Institute, Troy, New York, United States)Sauvik Das (Carnegie Mellon University, Pittsburgh, Pennsylvania, United States)Ada Lerner (Northeastern University, Boston, Massachusetts, United States)Dakuo Wang (Northeastern University, Boston, Massachusetts, United States)Tianshi Li (Northeastern University, Boston, Massachusetts, United States)
The widespread use of Large Language Model (LLM)-based conversational agents (CAs), especially in high-stakes domains, raises many privacy concerns. Building ethical LLM-based CAs that respect user privacy requires an in-depth understanding of the privacy risks that concern users the most. However, existing research, primarily model-centered, does not provide insight into users' perspectives. To bridge this gap, we analyzed sensitive disclosures in real-world ChatGPT conversations and conducted semi-structured interviews with 19 LLM-based CA users. We found that users are constantly faced with trade-offs between privacy, utility, and convenience when using LLM-based CAs. However, users' erroneous mental models and the dark patterns in system design limited their awareness and comprehension of the privacy risks. Additionally, the human-like interactions encouraged more sensitive disclosures, which complicated users' ability to navigate the trade-offs. We discuss practical design guidelines and the needs for paradigm shifts to protect the privacy of LLM-based CA users.
3
Mnemosyne - Supporting Reminiscence for Individuals with Dementia in Residential Care Settings
Andrea Baumann (Lancaster University, Lancaster, United Kingdom)Peter Shaw (Lancaster University, Lancaster, United Kingdom)Ludwig Trotter (Lancaster University, Lancaster, Lancashire, United Kingdom)Sarah Clinch (The University of Manchester, Manchester, United Kingdom)Nigel Davies (Lancaster University, Lancaster, United Kingdom)
Reminiscence is known to play an important part in helping to mitigate the effects of dementia. Within the HCI community, work has typically focused on supporting reminiscence at an individual or social level but less attention has been given to supporting reminiscence in residential care settings. This lack of research became particularly apparent during the COVID pandemic when traditional forms of reminiscence involving physical artefacts and face-to-face interactions became especially challenging. In this paper we report on the design, development and evaluation of a reminiscence system, deployed in a residential care home over a two-year-period that included the pandemic. Mnemosyne comprises a pervasive display network and a browser-based application whose adoption and use we explored using a mixed methods approach. Our findings offer insights that will help shape the development and evaluation of future systems, particularly those that use pervasive displays to support unsupervised reminiscence.
2
Understanding User Acceptance of Electrical Muscle Stimulation in Human-Computer Interaction
Sarah Faltaous (University Duisburg-Essen , Essen, Germany)Julie R.. Williamson (University of Glasgow, Glasgow, United Kingdom)Marion Koelle (OFFIS - Institute for Information Technology, Oldenburg, Germany)Max Pfeiffer (Aldi Sued, Muelheim a.d.R., NRW, Germany)Jonas Keppel (University of Duisburg-Essen, Essen, Germany)Stefan Schneegass (University of Duisburg-Essen, Essen, NRW, Germany)
Electrical Muscle Stimulation (EMS) has unique capabilities that can manipulate users' actions or perceptions, such as actuating user movement while walking, changing the perceived texture of food, and guiding movements for a user learning an instrument. These applications highlight the potential utility of EMS, but such benefits may be lost if users reject EMS. To investigate user acceptance of EMS, we conducted an online survey (N=101). We compared eight scenarios, six from HCI research applications and two from the sports and health domain. To gain further insights, we conducted in-depth interviews with a subset of the survey respondents (N=10). The results point to the challenges and potential of EMS regarding social and technological acceptance, showing that there is greater acceptance of applications that manipulate action than those that manipulate perception. The interviews revealed safety concerns and user expectations for the design and functionality of future EMS applications.
2
Designing Haptic Feedback for Sequential Gestural Inputs
Shan Xu (Meta, Redmond, Washington, United States)Sarah Sykes (Meta, Redmond, Washington, United States)Parastoo Abtahi (Meta, Toronto, Ontario, Canada)Tovi Grossman (University of Toronto, Toronto, Ontario, Canada)Daylon Walden (Meta, Redmond, Washington, United States)Michael Glueck (Meta, Toronto, Ontario, Canada)Carine Rognon (Meta, Redmond, Washington, United States)
This work seeks to design and evaluate haptic feedback for sequential gestural inputs, where mid-air hand gestures are used to express system commands. Nine haptic patterns are first designed leveraging metaphors. To pursue efficient interaction, we examine the trade-off between pattern duration and recognition accuracy and find that durations as short as 0.3s-0.5s achieve roughly 80\%-90\% accuracy. We then examine the haptic design for sequential inputs, where we vary when the feedback for each gesture is provided, along with pattern duration, gesture sequence length, and age. Results show that providing haptic patterns right after detected hand gestures leads to significantly more efficient interaction compared with concatenating all haptic patterns after the gesture sequence. Moreover, the number of gestures had little impact on performance, but age is a significant predictor. Our results suggest that immediate feedback with 0.3s and 0.5s pattern duration would be recommended for younger and older users respectively.
2
Spatial Gaze Markers: Supporting Effective Task Switching in Augmented Reality
Mathias N.. Lystbæk (Aarhus University, Aarhus, Denmark)Ken Pfeuffer (Aarhus University, Aarhus, Denmark)Tobias Langlotz (University of Otago, Dunedin, New Zealand)Jens Emil Sloth. Grønbæk (Aarhus University, Aarhus, Denmark)Hans Gellersen (Lancaster University, Lancaster, United Kingdom)
Task switching can occur frequently in daily routines with physical activity. In this paper, we introduce Spatial Gaze Markers, an augmented reality tool to support users in immediately returning to the last point of interest after an attention shift. The tool is task-agnostic, using only eye-tracking information to infer distinct points of visual attention and to mark the corresponding area in the physical environment. We present a user study that evaluates the effectiveness of Spatial Gaze Markers in simulated physical repair and inspection tasks against a no-marker baseline. The results give insights into how Spatial Gaze Markers affect user performance, task load, and experience of users with varying levels of task type and distractions. Our work is relevant to assist physical workers with simple AR techniques and render task switching faster with less effort.
2
A Systematic Review and Meta-analysis of the Effectiveness of Body Ownership Illusions in Virtual Reality
Aske Mottelson (IT University of Copenhagen, Copenhagen, Denmark)Andreea Muresan (University of Copenhagen, Copenhagen, Denmark)Kasper Hornbæk (University of Copenhagen, Copenhagen, Denmark)Guido Makransky (University of Copenhagen, Copenhagen, Denmark)
Body ownership illusions (BOIs) occur when participants experience that their actual body is replaced by a body shown in virtual reality (VR). Based on a systematic review of the cumulative evidence on BOIs from 111 research articles published in 2010 to 2021, this article summarizes the findings of empirical studies of BOIs. Following the PRISMA guidelines, the review points to diverse experimental practices for inducing and measuring body ownership. The two major components of embodiment measurement, body ownership and agency, are examined. The embodiment of virtual avatars generally leads to modest body ownership and slightly higher agency. We also find that BOI research lacks statistical power and standardization across tasks, measurement instruments, and analysis approaches. Furthermore, the reviewed studies showed a lack of clarity in fundamental terminology, constructs, and theoretical underpinnings. These issues restrict scientific advances on the major components of BOIs, and together impede scientific rigor and theory-building.
2
ARCADIA: A Gamified Mixed Reality System for Emotional Regulation and Self-Compassion
José Luis Soler-Domínguez (Instituto Tecnológico de Informática, Valencia, Spain)Samuel Navas-Medrano (Instituto Tecnológico de Informática, Valencia, Spain)Patricia Pons (Instituto Tecnológico de Informática, Valencia, Spain)
Mental health and wellbeing have become one of the significant challenges in global society, for which emotional regulation strategies hold the potential to offer a transversal approach to addressing them. However, the persistently declining adherence of patients to therapeutic interventions, coupled with the limited applicability of current technological interventions across diverse individuals and diagnoses, underscores the need for innovative solutions. We present ARCADIA, a Mixed-Reality platform strategically co-designed with therapists to enhance emotional regulation and self-compassion. ARCADIA comprises several gamified therapeutic activities, with a strong emphasis on fostering patient motivation. Through a dual study involving therapists and mental health patients, we validate the fully functional prototype of ARCADIA. Encouraging results are observed in terms of system usability, user engagement, and therapeutic potential. These findings lead us to believe that the combination of Mixed Reality and gamified therapeutic activities could be a significant tool in the future of mental health.
2
Narrating Fitness: Leveraging Large Language Models for Reflective Fitness Tracker Data Interpretation
Konstantin R.. Strömel (Osnabrück University, Osnabrück, Germany)Stanislas Henry (ENSEIRB-MATMECA Bordeaux, Bordeaux, France)Tim Johansson (Chalmers University of Technology, Gothenburg, Sweden)Jasmin Niess (University of Oslo, Oslo, Norway)Paweł W. Woźniak (Chalmers University of Technology, Gothenburg, Sweden)
While fitness trackers generate and present quantitative data, past research suggests that users often conceptualise their wellbeing in qualitative terms. This discrepancy between numeric data and personal wellbeing perception may limit the effectiveness of personal informatics tools in encouraging meaningful engagement with one’s wellbeing. In this work, we aim to bridge the gap between raw numeric metrics and users’ qualitative perceptions of wellbeing. In an online survey with $n=273$ participants, we used step data from fitness trackers and compared three presentation formats: standard charts, qualitative descriptions generated by an LLM (Large Language Model), and a combination of both. Our findings reveal that users experienced more reflection, focused attention and reward when presented with the generated qualitative data compared to the standard charts alone. Our work demonstrates how automatically generated data descriptions can effectively complement numeric fitness data, fostering a richer, more reflective engagement with personal wellbeing information.
2
LegacySphere: Facilitating Intergenerational Communication Through Perspective-Taking and Storytelling in Embodied VR
Chenxinran Shen (University of British Columbia, Vancouver, British Columbia, Canada)Joanna McGrenere (University of British Columbia, Vancouver, British Columbia, Canada)Dongwook Yoon (University of British Columbia, Vancouver, British Columbia, Canada)
Intergenerational communication can enhance well-being and family cohesion, but stereotypes and low empathy can be barriers to achieving effective communication. VR perspective-taking is a potential approach that is known to enhance understanding and empathy toward others by allowing a user to take another's viewpoint. In this study, we introduce LegacySphere, a novel VR perspective-taking experience leveraging the combination of embodiment, role-play, and storytelling. To explore LegacySphere's design and impact, we conducted an observational study involving five dyads with a one-generation gap. We found that LegacySphere promotes empathetic and reflexive intergenerational dialogue. Specifically, avatar embodiment encourages what we term "relationship cushioning,'' fostering a trustful, open environment for genuine communications. The blending of real and embodied identities prompts insightful questions, merging both perspectives. The experience also nurtures a sense of unity and stimulates reflections on aging. Our work highlights the potential of immersive technologies for enhancing empathetic intergenerational relationships.
2
Uncovering and Addressing Blink-Related Challenges in Using Eye Tracking for Interactive Systems
Jesse W. Grootjen (LMU Munich, Munich, Germany)Henrike Weingärtner (LMU Munich, Munich , Germany)Sven Mayer (LMU Munich, Munich, Germany)
Currently, interactive systems use physiological sensing to enable advanced functionalities. While eye tracking is a promising means to understand the user, eye tracking data inherently suffers from missing data due to blinks, which may result in reduced system performance. We conducted a literature review to understand how researchers deal with this issue. We uncovered that researchers often implemented their use-case-specific pipeline to overcome the issue, ranging from ignoring missing data to artificial interpolation. With these first insights, we run a large-scale analysis on 11 publicly available datasets to understand the impact of the various approaches on data quality and accuracy. By this, we highlight the pitfalls in data processing and which methods work best. Based on our results, we provide guidelines for handling eye tracking data for interactive systems. Further, we propose a standard data processing pipeline that allows researchers and practitioners to pre-process and standardize their data efficiently.
2
Sweating the Details: Emotion Recognition and the Influence of Physical Exertion in Virtual Reality Exergaming
Dominic Potts (University of Bath, Bath, United Kingdom)Zoe Broad (University of Bath, Bath, United Kingdom)Tarini Sehgal (University of Bath , Bath, United Kingdom)Joseph Hartley (University of Bath, Bath, United Kingdom)Eamonn O'Neill (University of Bath, Bath, United Kingdom)Crescent Jicol (University of Bath, Bath, United Kingdom)Christopher Clarke (University of Bath, Bath, United Kingdom)Christof Lutteroth (University of Bath, Bath, United Kingdom)
There is great potential for adapting Virtual Reality (VR) exergames based on a user's affective state. However, physical activity and VR interfere with physiological sensors, making affect recognition challenging. We conducted a study (n=72) in which users experienced four emotion inducing VR exergaming environments (happiness, sadness, stress and calmness) at three different levels of exertion (low, medium, high). We collected physiological measures through pupillometry, electrodermal activity, heart rate, and facial tracking, as well as subjective affect ratings. Our validated virtual environments, data, and analyses are openly available. We found that the level of exertion influences the way affect can be recognised, as well as affect itself. Furthermore, our results highlight the importance of data cleaning to account for environmental and interpersonal factors interfering with physiological measures. The results shed light on the relationships between physiological measures and affective states and inform design choices about sensors and data cleaning approaches for affective VR.
1
Metamorpheus: Interactive, Affective, and Creative Dream Narration Through Metaphorical Visual Storytelling
Qian Wan (City University of Hong Kong, Hong Kong, China)Xin Feng (Harvard University Graduate School of Design, Cambridge, Massachusetts, United States)Yining Bei (Massachusetts Institute of Technology, Cambridge, Massachusetts, United States)Zhiqi Gao (Nankai University, Tianjin, China)Zhicong Lu (City University of Hong Kong, Hong Kong, China)
Human emotions are essentially molded by lived experiences, from which we construct personalised meaning. The engagement in such meaning-making process has been practiced as an intervention in various psychotherapies to promote wellness. Nevertheless, to support recollecting and recounting lived experiences in everyday life remains under explored in HCI. It also remains unknown how technologies such as generative AI models can facilitate the meaning making process, and ultimately support affective mindfulness. In this paper we present Metamorpheus, an affective interface that engages users in a creative visual storytelling of emotional experiences during dreams. Metamorpheus arranges the storyline based on a dream's emotional arc, and provokes self-reflection through the creation of metaphorical images and text depictions. The system provides metaphor suggestions, and generates visual metaphors and text depictions using generative AI models, while users can apply generations to recolour and re-arrange the interface to be visually affective. Our experience-centred evaluation manifests that, by interacting with Metamorpheus, users can recall their dreams in vivid detail, through which they relive and reflect upon their experiences in a meaningful way.
1
Glanceable Data Visualizations for Older Adults: Establishing Thresholds and Examining Disparities Between Age Groups
Zack While (University of Massachusetts Amherst, Amherst, Massachusetts, United States)Tanja Blascheck (University of Stuttgart, Stuttgart, Germany)Yujie Gong (Smith College, Northampton, Massachusetts, United States)Petra Isenberg (Université Paris-Saclay, CNRS, Orsay, France)Ali Sarvghad (University of Massachusetts Amherst, Amherst, Massachusetts, United States)
We present results of a replication study on smartwatch visualizations with adults aged 65 and older. The older adult population is rising globally, coinciding with their increasing interest in using small wearable devices, such as smartwatches, to track and view data. Smartwatches, however, pose challenges to this population: fonts and visualizations are often small and meant to be seen at a glance. How concise design on smartwatches interacts with aging-related changes in perception and cognition, however, is not well understood. We replicate a study that investigated how visualization type and number of data points affect glanceable perception. We observe strong evidence of differences for participants aged 75 and older, sparking interesting questions regarding the study of visualization and older adults. We discuss first steps toward better understanding and supporting an older population of smartwatch wearers and reflect on our experiences working with this population. Supplementary materials are available at \url{https://osf.io/7x4hq/}.
1
Stretch your reach: Studying Self-Avatar and Controller Misalignment in Virtual Reality Interaction
Jose Luis Ponton (Universitat Politècnica de Catalunya, Barcelona, Spain)Reza Keshavarz (Università di Bologna, Bologna, Italy)Alejandro Beacco (Universitat Politècnica de Catalunya, Barcelona, Spain)Nuria Pelechano (Universitat Politècnica de Catalunya, Barcelona, Catalunya, Spain)
Immersive Virtual Reality typically requires a head-mounted display (HMD) to visualize the environment and hand-held controllers to interact with the virtual objects. Recently, many applications display full-body avatars to represent the user and animate the arms to follow the controllers. Embodiment is higher when the self-avatar movements align correctly with the user. However, having a full-body self-avatar following the user's movements can be challenging due to the disparities between the virtual body and the user's body. This can lead to misalignments in the hand position that can be noticeable when interacting with virtual objects. In this work, we propose five different interaction modes to allow the user to interact with virtual objects despite the self-avatar and controller misalignment and study their influence on embodiment, proprioception, preference, and task performance. We modify aspects such as whether the virtual controllers are rendered, whether controllers are rendered in their real physical location or attached to the user's hand, and whether stretching the avatar arms to always reach the real controllers. We evaluate the interaction modes both quantitatively (performance metrics) and qualitatively (embodiment, proprioception, and user preference questionnaires). Our results show that the stretching arms solution, which provides body continuity and guarantees that the virtual hands or controllers are in the correct location, offers the best results in embodiment, user preference, proprioception, and performance. Also, rendering the controller does not have an effect on either embodiment or user preference.
1
Volumetric Hybrid Workspaces: Interactions with Objects in Remote and Co-located Telepresence
Andrew Irlitti (University of Melbourne, Melbourne, Australia)Mesut Latifoglu (The University of Melbourne, Melbourne, Australia)Thuong Hoang (Deakin University, Geelong, Australia)Brandon Victor. Syiem (Queensland University of Technology, Brisbane, Queensland, Australia)Frank Vetere (The University of Melbourne, Melbourne, Australia)
Volumetric telepresence aims to create a shared space, allowing people in local and remote settings to collaborate seamlessly. Prior telepresence examples typically have asymmetrical designs, with volumetric capture in one location and objects in one format. In this paper, we present a volumetric telepresence mixed reality system that supports real-time, symmetrical, multi-user, partially distributed interactions, using objects in multiple formats, across multiple locations. We align two volumetric environments around a common spatial feature to create a shared workspace for remote and co-located people using objects in three formats: physical, virtual, and volumetric. We conducted a study with 18 participants over 6 sessions, evaluating how telepresence workspaces support spatial coordination and hybrid communication for co-located and remote users undertaking collaborative tasks. Our findings demonstrate the successful integration of remote spaces, effective use of proxemics and deixis to support negotiation, and strategies to manage interactivity in hybrid workspaces.
1
Independent Validation of the Player Experience Inventory: Findings from a Large Set of Video Game Players
Sebastian A. C.. Perrig (University of Basel, Basel, Switzerland)Nicolas Scharowski (University of Basel, Basel, Switzerland)Florian Brühlmann (University of Basel, Basel, Switzerland)Nick von Felten (University of Basel, Basel, Switzerland)Klaus Opwis (University of Basel, Basel, Switzerland)Lena Fanya. Aeschbach (University of Basel, Basel, Switzerland)
Measuring the subjective experience of digital game players is essential to player experience research. Recently, the Player Experience Inventory (PXI) was developed, which assesses both functional and psychosocial consequences of digital gameplay. We present a pre-registered independent online study with a large sample to provide additional evidence of psychometric quality for the PXI. Responses from 1518 participants were collected, rating a recent or memorable experience playing a digital game using the PXI and related measures. While our results from standard psychometric reliability and validity analyses generally favored the PXI, we also identified challenges with the immersion construct. Further, we find a ten-factor model, or alternatively, an 11-factor should enjoyment be measured, to fit our collected data best. In sum, the PXI is a valuable tool to measure a variety of constructs central to player experience.
1
A Design Framework for Reflective Play
Josh Aaron Miller (Northeastern University, Boston, Massachusetts, United States)Kutub Gandhi (Northeastern University, Boston, Massachusetts, United States)Matthew Alexander. Whitby (University of York, York, Yorkshire, United Kingdom)Mehmet Kosa (Art + Design, Boston, Massachusetts, United States)Seth Cooper (Northeastern University, Boston, Massachusetts, United States)Elisa D.. Mekler (IT University of Copenhagen, Copenhagen, Denmark)Ioanna Iacovides (University of York, York, United Kingdom)
Recent research has begun exploring games as a medium for reflection due to their affordances as interactive systems of challenge. However, little effort has been put into (1) synthesizing insights across studies and disciplines and (2) translating the academic work on reflective play into practical takeaways for game developers. This article takes the first steps toward summarizing existing work on reflective play and translating insights for practical implementation by identifying key game elements present in games that evoke reflection. We divide these elements into five approaches: Disruptions, Slowdowns, Questioning, Revisiting, and Enhancers. Finally, we provide an actionable supplement for practicing game developers to apply these concepts to their games.
1
Fair Machine Guidance to Enhance Fair Decision Making in Biased People
Mingzhe Yang (The University of Tokyo, Tokyo, Japan)Hiromi Arai (RIKEN, Tokyo, Japan)Naomi Yamashita (NTT, Keihanna, Japan)Yukino Baba (The University of Tokyo, Tokyo, Japan)
Teaching unbiased decision-making is crucial for addressing biased decision-making in daily life. Although both raising awareness of personal biases and providing guidance on unbiased decision-making are essential, the latter topics remains under-researched. In this study, we developed and evaluated an AI system aimed at educating individuals on making unbiased decisions using fairness-aware machine learning. In a between-subjects experimental design, 99 participants who were prone to bias performed personal assessment tasks. They were divided into two groups: a) those who received AI guidance for fair decision-making before the task and b) those who received no such guidance but were informed of their biases. The results suggest that although several participants doubted the fairness of the AI system, fair machine guidance prompted them to reassess their views regarding fairness, reflect on their biases, and modify their decision-making criteria. Our findings provide insights into the design of AI systems for guiding fair decision-making in humans.
1
SplitBody: Reducing Mental Workload while Multitasking via Muscle Stimulation
Romain Nith (University of Chicago, Chicago, Illinois, United States)Yun Ho (University of Chicago, Chicago, Illinois, United States)Pedro Lopes (University of Chicago, Chicago, Illinois, United States)
Techniques like electrical muscle stimulation (EMS) offer promise in assisting physical tasks by automating movements, e.g., shaking a spray-can or tapping a button. However, existing actuation systems improve the performance of a task that users are already focusing on (e.g., users are already focused on using the spray-can). Instead, we investigate whether these interactive-actuation systems (e.g., EMS) offer any benefits if they automate a task that happens in the background of the user's focus. Thus, we explored whether automating a repetitive movement via EMS would reduce mental workload while users perform parallel tasks (e.g., focusing on writing an essay while EMS stirs a pot of soup). In our study, participants performed a cognitively-demanding multitask aided by EMS (SplitBody condition) or performed by themselves (baseline). We found that with SplitBody performance increased (35% on both tasks, 18% on the non-EMS-automated task), physical-demand decreased (31%), and mental-workload decreased (26%).
1
MouseRing: Always-available Touchpad Interaction with IMU Rings
Xiyuan Shen (Tsinghua University, Beijing, China)Chun Yu (Tsinghua University, Beijing, China)Xutong Wang (Tsinghua University, Beijing, China)Chen Liang (Tsinghua University, Beijing, Beijing, China)Haozhan Chen (Tsinghua University, Beijing, China)Yuanchun Shi (Tsinghua University, Beijing, China)
Tracking fine-grained finger movements with IMUs for continuous 2D-cursor control poses significant challenges due to limited sensing capabilities. Our findings suggest that finger-motion patterns and the inherent structure of joints provide beneficial physical knowledge, which lead us to enhance motion perception accuracy by integrating physical priors into ML models. We propose MouseRing, a novel ring-shaped IMU device that enables continuous finger-sliding on unmodified physical surfaces like a touchpad. A motion dataset was created using infrared cameras, touchpads, and IMUs. We then identified several useful physical constraints, such as joint co-planarity, rigid constraints, and velocity consistency. These principles help refine the finger-tracking predictions from an RNN model. By incorporating touch state detection as a cursor movement switch, we achieved precise cursor control. In a Fitts’ Law study, MouseRing demonstrated input efficiency comparable to touchpads. In real-world applications, MouseRing ensured robust, efficient input and good usability across various surfaces and body postures.
1
Wrist-bound Guanxi, Jiazu, and Kuolie: Unpacking Chinese Adolescent Smartwatch-Mediated Socialization
Lanjing Liu (Virginia Tech, Blacksburg, Virginia, United States)Chao Zhang (Cornell University, Ithaca, New York, United States)Zhicong Lu (City University of Hong Kong, Hong Kong, China)
Adolescent peer relationships, essential for their development, are increasingly mediated by digital technologies. As this trend continues, wearable devices, especially smartwatches tailored for adolescents, is reshaping their socialization. In China, smartwatches like XTC have gained wide popularity, introducing unique features such as "Bump-to-Connect'' and exclusive social platforms. Nonetheless, how these devices influence adolescents' peer experience remains unknown. Addressing this, we interviewed 18 Chinese adolescents (age: 11---16), discovering a smartwatch-mediated social ecosystem. Our findings highlight the ice-breaking role of smartwatches in friendship initiation and their use for secret messaging with local peers. Within the online smartwatch community, peer status is determined by likes and visibility, leading to diverse pursuit activities (eg., chu guanxi, jiazu, kuolie) and negative social dynamics. We discuss the core affordances of smartwatches and Chinese cultural factors that influence adolescent social behavior, and offer implications for designing future wearables that responsibly and safely support adolescent socialization.
1
Implementation of Virtual Reality Motivated Physical Activity via Omnidirectional Treadmill in a Supported Living Facility for Older Adults: A Mixed-Methods Evaluation.
Hannah Louise. Bradwell (University of Plymouth, Plymouth, Devon, United Kingdom)Leonie Cooper (University of Plymouth, Plymouth, United Kingdom)Rory Baxter (University of Plymouth, Plymouth, United Kingdom)Simone Tomaz (University of Stirling, Stirling, United Kingdom)Katie Jane Edwards (University of Plymouth, Plymouth, United Kingdom)Anna C. Whittaker (University of Stirling, Stirling, United Kingdom)Ray Jones (University of Plymouth, Plymouth, United Kingdom)
Virtual reality (VR) can support healthy ageing, but few devices have been trialed with frail older adults to increase physical activity. We conducted a preliminary mixed-methods implementation evaluation of an omnidirectional VR treadmill and a static VR experience with seven older adults over a six-week period in a supported living facility. Frequency of use and pre-post physical functioning measures were collected, mainly to establish technology suitability based on person characteristics. Diary entries following technology use, resident focus group and staff interview revealed technology acceptance and perceived potential for increasing physical activity, health and wellbeing through accessing virtual environments, which motivated continued activity. Results demonstrated technology suitability for a range of older adults with various mobility and physical impairments. However, residents noted interest in a seated treadmill for physical activity without perceived risks of falls with standing treadmills. Staff raised considerations around care home implementations including usability, cost and space.
1
Thermal Masking: When the Illusion Takes Over the Real
Haokun Wang (University of Texas at Dallas, Richardson, Texas, United States)Yatharth Singhal (University of Texas at Dallas, Richardson, Texas, United States)Hyunjae Gil (University of Texas at Dallas, Richardson, Texas, United States)Jin Ryong Kim (University of Texas at Dallas, Richardson, Texas, United States)
This paper reports on a thermal illusion called thermal masking. Thermal masking is a phenomenon induced by thermal referral to completely mask the original thermal sensation, providing thermal sensation only at the tactile site. Three experiments are conducted using thermal and vibrotactile actuators to investigate the nature of thermal masking on human arms. The first experiment investigates the effects of different temperatures on masking. The results show a higher percentage of thermal masking occurs in warm than hot or cold conditions. The second experiment examines how far the thermal masking can be perceived. The results show that masking can reach up to 24 cm from the thermal site. The third experiment explores the interaction space by placing the tactile actuators on the opposite side of the thermal actuator. The results confirm that thermal masking can reach the other side of the arm, and the performance was higher in warm conditions.
1
Haptic Source-effector: Full-body Haptics via Non-invasive Brain Stimulation
Yudai Tanaka (University of Chicago, Chicago, Illinois, United States)Jacob Serfaty (University of Chicago, Chicago, Illinois, United States)Pedro Lopes (University of Chicago, Chicago, Illinois, United States)
We propose a novel concept for haptics in which one centralized on-body actuator renders haptic effects on multiple body parts by stimulating the brain, i.e., the source of the nervous system—we call this a haptic source-effector, as opposed to the traditional wearables’ approach of attaching one actuator per body part (end-effectors). We implement our concept via transcranial-magnetic-stimulation (TMS)—a non-invasive technique from neuroscience/medicine in which electromagnetic pulses safely stimulate brain areas. Our approach renders ~15 touch/force-feedback sensations throughout the body (e.g., hands, arms, legs, feet, and jaw—which we found in our first user study), all by stimulating the user’s sensorimotor cortex with a single magnetic coil moved mechanically across the scalp. In our second user study, we probed into participants’ experiences while using our haptic display in VR. Finally, as the first implementation of full-body haptics based on non-invasive brain stimulation, we discuss the roadmap to extend its interactive opportunities.
1
LaCir: A multilayered laser-cuttable material to co-fabricate circuitry and structural components.
Niels Christian. Buch (University of Copenhagen, Copenhagen, Denmark)Carlos Tejada (University of Copenhagen, Copenhagen, Denmark)Daniel Ashbrook (University of Copenhagen, Copenhagen, Denmark)Valkyrie Savage (University of Copenhagen, Copenhagen, Denmark)
Rapid prototyping is an important tool for designers, but many fabrication techniques are slow and create bulky components requiring multiple machines and processes to achieve desired device shape and electronic functionality. Prior work explored ways to ease fabricating shapes or designing electronics, but we focus on creating shape and electrical pathways at the same time from a single material and machine. LaCir leverages a three-layered, laser-cuttable material to incorporate circuits into the structural substrate of the design using laser cutters. Our substrate features a layer of conductive material sandwiched between thermoplastic sheets, allowing designers to cut electrical traces and assembleable, 3D object geometry in a single pass. We evaluate different composite materials, weighing their cuttability, ease of assembly, and conductivity; we also show using fully laser-cut joints as structural and electrical connections. We demonstrate LaCir's flexibility through several example artifacts.
1
Interactive Shape Sonification for Tumor Localization in Breast Cancer Surgery
Laura Schütz (Technical University of Munich, Munich, Germany)Trishia El Chemaly (Stanford University, Stanford, California, United States)Emmanuelle Weber (Stanford University, Stanford, California, United States)Anh Thien Doan (Stanford University, Stanford, California, United States)Jacqueline Tsai (Stanford University, Stanford, California, United States)Christoph Leuze (Stanford University, Stanford, California, United States)Bruce Daniel (Stanford University, Stanford, California, United States)Nassir Navab (Technische Universität München, Garching bei München, Germany)
About 20 percent of patients undergoing breast-conserving surgery require reoperation due to cancerous tissue remaining inside the breast. Breast cancer localization systems utilize auditory feedback to convey the distance between a localization probe and a small marker (seed) implanted into the breast tumor prior to surgery. However, no information on the location of the tumor margin is provided. To reduce the reoperation rate by improving the usability and accuracy of the surgical task, we developed an auditory display using shape sonification to assist with tumor margin localization. Accuracy and usability of the interactive shape sonification were determined on models of the female breast in three user studies with both breast surgeons and non-clinical participants. The comparative studies showed a significant increase in usability (p<0.05) and localization accuracy (p<0.001) of the shape sonification over the auditory feedback currently used in surgery.
1
VAL: Interactive Task Learning with GPT Dialog Parsing
Lane Lawley (Georgia Institute of Technology, Atlanta, Georgia, United States)Christopher MacLellan (Georgia Institute of Technology, Atlanta, Georgia, United States)
Machine learning often requires millions of examples to produce static, black-box models. In contrast, interactive task learning (ITL) emphasizes incremental knowledge acquisition from limited instruction provided by humans in modalities such as natural language. However, ITL systems often suffer from brittle, error-prone language parsing, which limits their usability. Large language models (LLMs) are resistant to brittleness but are not interpretable and cannot learn incrementally. We present VAL, an ITL system with a new philosophy for LLM/symbolic integration. By using LLMs only for specific tasks—such as predicate and argument selection—within an algorithmic framework, VAL reaps the benefits of LLMs to support interactive learning of hierarchical task knowledge from natural language. Acquired knowledge is human interpretable and generalizes to support execution of novel tasks without additional training. We studied users' interactions with VAL in a video game setting, finding that most users could successfully teach VAL using language they felt was natural.
1
vARitouch: Back of the Finger Device for Adding Variable Compliance to Rigid Objects
Gabriela Vega (Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Saarland, Germany)Valentin Martinez-Missir (Max Planck Institute For Informatics, Saarland, Saarbrucken, Germany)Dennis Wittchen (Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany)Nihar Sabnis (Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany)Audrey Girouard (Carleton University, Ottawa, Ontario, Canada)Karen Anne. Cochrane (University of Waterloo, Waterloo, Ontario, Canada)Paul Strohmeier (Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany)
We present vARitouch, a back-of-the-finger wearable that can modify the perceived tactile material properties of the uninstrumented world around us: vARitouch can modulate the perceived softness of a rigid object through a vibrotactile compliance illusion. As vARitouch does not cover the fingertip, all-natural tactile properties are preserved. We provide three contributions: (1) We demonstrate the feasibility of the concept through a psychophysics study, showing that virtual compliance can be continuously modulated, and perceived softness can be increased by approximately 30 Shore A levels. (2) A qualitative study indicates the desirability of such a device, showing that a back-of-the-finger haptic device has many attractive qualities. (3) To implement vARitouch, we identify a novel way to measure pressure from the back of the finger by repurposing a pulse oximetry sensor. Based on these contributions, we present the finalized vARitouch system, accompanied by a series of application scenarios.
1
Teaching artificial intelligence in extracurricular contexts through narrative-based learnersourcing
Dylan Edward. Moore (Dartmouth College, Hanover, New Hampshire, United States)Sophia R. Moore (Stony Brook University, Stony Brook, New York, United States)Bansharee Ireen (Dartmouth College, Hanover, New Hampshire, United States)Winston P. Iskandar (Mira Costa High School, Manhattan Beach, California, United States)Grigory Artazyan (Minerva University , San Francisco, California, United States)Elizabeth L. Murnane (Dartmouth College, Hanover, New Hampshire, United States)
Collaborative technology provides powerful opportunities to engage young people in active learning experiences that are inclusive, immersive, and personally meaningful. In particular, interactive narratives have proven to be effective scaffolds for learning, and learnersourcing has emerged as a promising student-driven approach to enable personalized education and quality control at-scale. We introduce the first synthesis of these ideas in the context of teaching artificial intelligence (AI), which is now seen as a critical component of 21st-century education. Specifically, we explore the design of a narrative-based learnersourcing platform where engagement is centered around a learner-made choose-your-own-adventure story. In grounding our approach, we draw from pedagogical literature, digital storytelling, and recent work on learnersourcing. We report on our iterative, learner-centered design process as well as our study findings that demonstrate the platform’s positive effects on knowledge gains, interest in AI concepts, and the overall user experience of narrative-based learnersourcing technology.
1
CamTroller: An Auxiliary Tool for Controlling Your Avatar in PC Games Using Natural Motion Mapping
Junjian CHEN (The Hong Kong Polytechnic University, Hong Kong, China)Yuqian Wang (The Hong Kong Polytechnic University, Kowloon, Hong Kong)Yan Luximon (The Hong Kong Polytechnic University, Kowloon, Hong Kong)
Natural motion mapping enhances the gaming experience by reducing the cognitive burden and increasing immersion. However, many players still use the keyboard and mouse in recent commercial PC games. To solve the conflict between complex avatar motion and the limited interaction system, we introduced CamTroller, an auxiliary tool for commercial one-to-one avatar mapping PC games following the concept of a natural user interface. To validate this concept, we selected PUBG as the application scenario and developed a proof-of-concept system to help players achieve a better experience by naturally mapping selected human motions to the avatars in games through an RGB webcam. A within-subject study with 18 non-professional players practiced common operation (Basic), professional player’s operation (Pro), and CamTroller. Results showed that the performance of CamTroller was as good as the Pro and significantly higher than Basic. Also, the subjective evaluation showed that CamTroller achieved significantly higher intuitiveness than Basic and Pro.