This study presents ErgoPulse, a system that integrates biomechanical simulation with electrical muscle stimulation (EMS) to provide kinesthetic force feedback to the lower-body in virtual reality (VR). ErgoPulse features two main parts: a biomechanical simulation part that calculates the lower-body joint torques to replicate forces from VR environments, and an EMS part that translates torques into muscle stimulations. In the first experiment, we assessed users' ability to discern haptic force intensity and direction, and observed variations in perceived resolution based on force direction. The second experiment evaluated ErgoPulse's ability to increase haptic force accuracy and user presence in both continuous and impulse force VR game environments. The experimental results showed that ErgoPulse's biomechanical simulation increased the accuracy of force delivery compared to traditional EMS, enhancing the overall user presence. Furthermore, the interviews proposed improvements to the haptic experience by integrating additional stimuli such as temperature, skin stretch, and impact.
https://doi.org/10.1145/3613904.3642008
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)