Recent developments in prompt-based generative AI has given rise to discourse surrounding the perceived ethical concerns, economic implications, and consequences for the future of cultural production. As generative imagery becomes pervasive in mainstream society, dominated primarily by emerging industry leaders, we encourage that the role of the CHI community be one of inquiry; to investigate the numerous ways in which generative AI has the potential to, and already is, augmenting human creativity. In this paper, we conducted a diffractive analysis exploring the potential role of prompt-based interfaces in artists' creative practice. Over a two week period, seven visual artists were given access to a personalised instance of Stable Diffusion, fine-tuned on a dataset of their work. In the following diffractive analysis, we identified two dominant modes adopted by participants, AI for ideation, and AI for production. We furthermore present a number of ethical design considerations for the future development of generative AI interfaces.
https://doi.org/10.1145/3613904.3641971
Data storytelling is powerful for communicating data insights, but it requires diverse skills and considerable effort from human creators. Recent research has widely explored the potential for artificial intelligence (AI) to support and augment humans in data storytelling. However, there lacks a systematic review to understand data storytelling tools from the perspective of human-AI collaboration, which hinders researchers from reflecting on the existing collaborative tool designs that promote humans' and AI's advantages and mitigate their shortcomings. This paper investigated existing tools with a framework from two perspectives: the stages in the storytelling workflow where a tool serves, including analysis, planning, implementation, and communication, and the roles of humans and AI in each stage, such as creators, assistants, optimizers, and reviewers. Through our analysis, we recognize the common collaboration patterns in existing tools, summarize lessons learned from these patterns, and further illustrate research opportunities for human-AI collaboration in data storytelling.
https://doi.org/10.1145/3613904.3642726
There is a growing demand for transparency in search engines to understand how search results are curated and to enhance users' trust. Prior research has introduced search result explanations with a focus on "how" to explain, assuming explanations are beneficial. Our study takes a step back to examine "if" search explanations are needed and "when" they are likely to provide benefits. Additionally, we summarize key characteristics of helpful explanations and share users' perspectives on explanation features provided by Google and Bing. Interviews with non-technical individuals reveal that users do not always seek or understand search explanations and mostly desire them for complex and critical tasks. They find Google's search explanations too obvious but appreciate the ability to contest search results. Based on our findings, we offer design recommendations for search engines and explanations to help users better evaluate search results and enhance their search experience.
https://doi.org/10.1145/3613904.3642059
We introduce VL2NL, a Large Language Model (LLM) framework that generates rich and diverse NL datasets using Vega-Lite specifications as input, thereby streamlining the development of Natural Language Interfaces (NLIs) for data visualization. To synthesize relevant chart semantics accurately and enhance syntactic diversity in each NL dataset, we leverage 1) a guided discovery incorporated into prompting so that LLMs can steer themselves to create faithful NL datasets in a self-directed manner; 2) a score-based paraphrasing to augment NL syntax along with four language axes. We also present a new collection of 1,981 real-world Vega-Lite specifications that have increased diversity and complexity than existing chart collections. When tested on our chart collection, VL2NL extracted chart semantics and generated L1/L2 captions with 89.4% and 76.0% accuracy, respectively. It also demonstrated generating and paraphrasing utterances and questions with greater diversity compared to the benchmarks. Last, we discuss how our NL datasets and framework can be utilized in real-world scenarios. The codes and chart collection are available at https://github.com/hyungkwonko/chart-llm.
https://doi.org/10.1145/3613904.3642943
Knowledge workers often need to extract and analyze information from a collection of documents to solve complex information tasks in the workplace, e.g., hiring managers reviewing resumes or analysts assessing risk in contracts. However, foraging for relevant information can become tedious and repetitive over many documents and criteria of interest. We introduce Marco, a mixed-initiative workspace supporting sensemaking over diverse business document collections. Through collection-centric assistance, Marco reduces the cognitive costs of extracting and structuring information, allowing users to prioritize comparative synthesis and decision making processes. Users interactively communicate their information needs to an AI assistant using natural language and compose schemas that provide an overview of a document collection. Findings from a usability study (n=16) demonstrate that when using Marco, users complete sensemaking tasks 16% more quickly, with less effort, and without diminishing accuracy. A design probe with seven domain experts identifies how Marco can benefit various real-world workflows.
https://doi.org/10.1145/3613904.3641969