Given large language models' (LLMs) increasing integration into workplace software, it is important to examine how biases in the models may impact workers. For example, stylistic biases in the language suggested by LLMs may cause feelings of alienation and result in increased labor for individuals or groups whose style does not match. We examine how such writer-style bias impacts inclusion, control, and ownership over the work when co-writing with LLMs. In an online experiment, participants wrote hypothetical job promotion requests using either hesitant or self-assured autocomplete suggestions from an LLM and reported their subsequent perceptions. We found that the style of the AI model did not impact perceived inclusion. However, individuals with higher perceived inclusion did perceive greater agency and ownership, an effect more strongly impacting participants of minoritized genders. Feelings of inclusion mitigated a loss of control and agency when accepting more AI suggestions.
https://doi.org/10.1145/3613904.3642650
In recent years, the global unemployment rate has remained persistently high. Compounding this issue, the ageing population in China often encounters additional challenges in finding employment due to prevalent age discrimination in daily life. However, with the advent of social media, there has been a rise in the popularity of short videos and live-streams for recruiting ageing workers. To better understand the motivations of ageing job seekers to engage with these video-based recruitment methods and to explore the extent to which such platforms can empower them, we conducted an interview-based study with ageing job seekers who have had exposure to these short recruitment videos and live-streaming channels. Our findings reveal that these platforms can provide a job-seeking choice that is particularly friendly to ageing job seekers, effectively improving their disadvantaged situation.
https://doi.org/10.1145/3613904.3642959
Generative AI platforms and features are permeating many aspects of work. Entrepreneurs from lean economies in particular are well positioned to outsource tasks to generative AI given limited resources. In this paper, we work to address a growing disparity in use of these technologies by building on a four-year partnership with a local entrepreneurial hub dedicated to equity in tech and entrepreneurship. Together, we co-designed an interactive workshops series aimed to onboard local entrepreneurs to generative AI platforms. Alongside four community-driven and iterative workshops with entrepreneurs across five months, we conducted interviews with 15 local entrepreneurs and community providers. We detail the importance of communal and supportive exposure to generative AI tools for local entrepreneurs, scaffolding actionable use (and supporting non-use), demystifying generative AI technologies by emphasizing entrepreneurial power, while simultaneously deconstructing the veneer of simplicity to address the many operational skills needed for successful application.
https://doi.org/10.1145/3613904.3642191
Data analysis is challenging as analysts must navigate nuanced decisions that may yield divergent conclusions. AI assistants have the potential to support analysts in planning their analyses, enabling more robust decision making. Though AI-based assistants that target code execution (e.g., Github Copilot) have received significant attention, limited research addresses assistance for both analysis execution and planning. In this work, we characterize helpful planning suggestions and their impacts on analysts’ workflows. We first review the analysis planning literature and crowd-sourced analysis studies to categorize suggestion content. We then conduct a Wizard-of-Oz study (n=13) to observe analysts’ preferences and reactions to planning assistance in a realistic scenario. Our findings highlight subtleties in contextual factors that impact suggestion helpfulness, emphasizing design implications for supporting different abstractions of assistance, forms of initiative, increased engagement, and alignment of goals between analysts and assistants.
https://doi.org/10.1145/3613904.3641891
Innovations in machine learning are enabling organisational knowledge bases to be automatically generated from working people’s activities. The potential for these to shift the ways in which knowledge is produced and shared raises questions about what types of knowledge might be inferred from working people’s actions, how these can be used to support work, and what the broader ramifications of this might be. This paper draws on findings from studies of (i) collaborative actions, and (ii) knowledge actions, to explore how these actions might (i) inform automatically generated knowledge bases, and (ii) be better supported through technological innovation. We triangulate findings to develop a framework of actions that are performed as part of everyday work, and use this to explore how mining those actions could result in knowledge being explicitly and implicitly contributed to a knowledge base. We draw on these possibilities to highlight implications and considerations for responsible design.