この勉強会は終了しました。ご参加ありがとうございました。
Generative Artificial Intelligence (AI) is integrated into everyday technology, including news, education, and social media. AI has further pervaded private conversations as conversational partners, auto-completion, and response suggestions. As social media becomes young people's main method of peer support exchange, we need to understand when and how AI can facilitate and assist in such exchanges in a beneficial, safe, and socially appropriate way. We asked 622 young people to complete an online survey and evaluate blinded human- and AI-generated responses to help-seeking messages. We found that participants preferred the AI-generated response to situations about relationships, self-expression, and physical health. However, when addressing a sensitive topic, like suicidal thoughts, young people preferred the human response. We also discuss the role of training in online peer support exchange and its implications for supporting young people's well-being. Disclaimer: This paper includes sensitive topics, including suicide ideation. Reader discretion is advised.
Social interaction is a crucial part of what it means to be human. Maintaining a healthy social life is strongly tied to positive outcomes for both physical and mental health. While we use personal informatics data to reflect on many aspects of our lives, technology-supported reflection for social interactions is currently under-explored. To address this, we first conducted an online survey (N=124) to understand how users want to be supported in their social interactions. Based on this, we designed and developed an app for users to track and reflect on their social interactions and deployed it in the wild for two weeks (N=25). Our results show that users are interested in tracking meaningful in-person interactions that are currently untraced and that an app can effectively support self-reflection on social interaction frequency and social load. We contribute insights and concrete design recommendations for technology-supported reflection for social interaction.
In public health and safety, precise detection of blood alcohol concentration (BAC) plays a critical role in implementing responsive interventions that can save lives. While previous research has primarily focused on computer-based or neuropsychological tests for BAC identification, the potential use of daily smartphone activities for BAC detection in real-life scenarios remains largely unexplored. Drawing inspiration from Instrumental Activities of Daily Living (I-ADL), our hypothesis suggests that Smartphone-based Activities of Daily Living (S-ADL) can serve as a viable method for identifying BAC. In our proof-of-concept study, we propose, design, and assess the feasibility of using S-ADLs to detect BAC in a scenario-based controlled laboratory experiment involving 40 young adults. In this study, we identify key S-ADL metrics, such as delayed texting in SMS, site searching, and finance management, that significantly contribute to BAC detection (with an AUC-ROC and accuracy of 81%). We further discuss potential real-life applications of the proposed BAC model.
People with a fear of being in water rarely engage in water activities and hence miss out on the associated health benefits. Prior research suggested virtual exposure to treat fears. However, when it comes to a fear of being in water, virtual water might not capture water’s immersive qualities, while real water can pose safety risks. We propose extended reality to combine both advantages: We conducted a study (N=12) where participants with a fear of being in water interacted with playful water-inspired virtual reality worlds while floating inside a floatation tank. Our findings, supported quantitatively by heart rate variability and qualitatively by interviews, suggest that playful extended reality could mitigate fear responses in an entertaining way. We also present insights for the design of future systems that aim to help people with a fear of being in water and other phobias by using the best of the virtual and physical worlds.