この勉強会は終了しました。ご参加ありがとうございました。
The COVID-19 pandemic has led governments worldwide to introduce various measures restricting human activity and mobility. Along with the administration of COVID-19 vaccinations and rapid testing, socio-technological solutions such as digital COVID-19 certificates have been considered as a strategy to lessen these restrictions and allow the resumption of routine activities. Using a mixed methods approach – a survey (n=1008) and 27 semi-structured interviews – this study explores the attitudes of residents in the Republic of Ireland towards the idea of introducing digital COVID-19 certificates. We examine the topics of acceptability, fairness, security and privacy of COVID-related personal data, and practical considerations for implementation. Our study reveals the conditional and contextual nature of the acceptability of digital certificates, identifying specific factors that affect it, associated data practices, and related public concerns and expectations of such technologies.
Contact tracers assist in containing the spread of highly infectious diseases such as COVID-19 by engaging community members who receive a positive test result in order to identify close contacts. Many contact tracers rely on community member's recall for those identifications, and face limitations such as unreliable memory. To investigate how technology can alleviate this challenge, we developed a visualization tool using de-identified location data sensed from campus WiFi and provided it to contact tracers during mock contact tracing calls. While the visualization allowed contact tracers to find and address inconsistencies due to gaps in community member’s memory, it also introduced inconsistencies such as false-positive and false-negative reports due to imperfect data, and information sharing hesitancy. We suggest design implications for technologies that can better highlight and inform contact tracers of potential areas of inconsistencies, and further present discussion on using imperfect data in decision making.
Digital contact tracing can limit the spread of infectious diseases. Nevertheless, barriers remain to attain sufficient adoption. In this study, we investigate how willingness to participate in contact tracing is affected by two critical factors: the modes of data collection and the type of data collected. We conducted a scenario-based survey study among 220 respondents in the United States (U.S.) to understand their perceptions about contact tracing associated with automated and manual contact tracing methods. The findings indicate a promising use of smartphones and a combination of public health officials and medical health records as information sources. Through a quantitative analysis, we describe how different modalities and individual demographic factors may affect user compliance when participants are asked to provide four key information pieces for contact tracing.
During crises like COVID-19, individuals are inundated with conflicting and time-sensitive information that drives a need for rapid assessment of the trustworthiness and reliability of information sources and platforms. This parallels evolutions in information infrastructures, ranging from social media to government data platforms. Distinct from current literature, which presumes a static relationship between the presence or absence of trust and people’s behaviors, our mixed-methods research focuses on situated trust, or trust that is shaped by people's information-seeking and assessment practices through emerging information platforms (e.g., social media, crowdsourced systems, COVID data platforms). Our findings characterize the shifts in trustee (what/who people trust) from information on social media to the social media platform(s), how distrust manifests skepticism in issues of data discrepancy, the insufficient presentation of uncertainty, and how this trust and distrust shift over time. We highlight the deep challenges in existing information infrastructures that influence trust and distrust formation.
COVID-19 has demonstrated the importance of digital contact tracing apps in reducing the spread of disease. Despite people widely expressing interest in using contact tracing apps, actual installation rates have been low in many parts of the world. Prior studies suggest that decisions to use these apps are largely shaped by pandemic beliefs, social influences, perceived benefits and harms, and other factors. However, there is a gap in understanding what factors motivate intention, but not subsequent behavior of actual adoption. Reporting on a survey of 290 U.S. residents, we disentangle the intention-behavior gap by investigating factors associated with installing a contact tracing app from those associated with intending to install, but not actually installing. Our results suggest that social norms can be leveraged to span the intention-behavior gap, and that a privacy paradox may influence people's adoption decisions. We present recommendations for technologies that enlist individuals to address collective challenges.