Electrical muscle stimulation (EMS) became a popular method for force-feedback without mechanical-actuators. While much has been written about the advantages of EMS, not much work has investigated circumventing its key limitations: (1) as impulses traverse the skin, they cause an uncomfortable “tingling”; (2) impulses are delivered via gelled-electrodes, which not only require direct skin contact (must be worn under clothes); but, also (3) dry up after a few hours. To tackle these, we explore switching from electrical to magnetic muscle stimulation (MMS), via electromagnetic fields generated by coils. The first advantage is that MMS coils do not require direct skin contact and can actuate up to 5 cm away (Study#1)—this enables applications not possible with EMS, such as stimulation over the clothes and without ever replacing electrodes. Second, and more important, MMS results in ~50 % less discomfort caused by tingling than EMS (Study#2). We found that reducing this tingling discomfort has two downstream effects for interactive systems: (1) participants rated MMS force-feedback as more realistic than that of EMS (Study#3); and (2) participants could more accurately perceive the pose actuated by the interactive system (Study#4). Finally, we demonstrated applications where our proposed switch from EMS to MMS improves user experience, including for VR feedback, gaming, and pose-control.
https://doi.org/10.1145/3586183.3606812
ACM Symposium on User Interface Software and Technology