ConeAct: A Multistable Actuator for Dynamic Materials

要旨

Complex actuators in a small form factor are essential for dynamic interfaces. In this paper, we propose ConeAct, a cone-shaped actuator that can extend, contract, and bend in multiple directions to support rich expression in dynamic materials. A key benefit of our actuator is that it is self-contained and portable as the whole system. We designed our actuator’s structure to be multistable to hold its shape passively, while we control its transition between states using active materials, i.e., shape memory alloys. We present the design space by showcasing our actuator module as part of self-rolling robots, reconfigurable deployable structures, volumetric shape-changing objects and tactile displays. To assist users in designing such structures, we present an interactive editor including simulation to design such interactive capabilities.

著者
Yuyu Lin
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
Jesse T. Gonzalez
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
Zhitong Cui
Zhejiang University, Hangzhou, Zhejiang, China
Yash Rajeev Banka
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
Alexandra Ion
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
論文URL

doi.org/10.1145/3613904.3642949

動画

会議: CHI 2024

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)

セッション: Fabrication and Dynamic Structures

313C
5 件の発表
2024-05-16 20:00:00
2024-05-16 21:20:00