Countdowns and count-ups are very useful displays that explicitly show how long users should wait and also show the current processing states of a given task. Most countdowns or count-ups decrease or increase their digit every one second exactly, and most users have an implicit assumption that the digit changes every one second exactly. However, there are no studies that investigate how users perceive wait times with these countdowns and count-ups and that consider changing users' perception of time passing as shorter than the actual passage of time by means of countdowns and count-ups while taking into account such user assumptions. To clarify these issues, we first investigated how users perceive countdowns "from 3/5/10 to 0" and count-ups "from 0 to 3/5/10" that have different lengths of intervals from 800 to 1200 msec (Experiment 1). Next, on the basis of the results of Experiment 1, we explored a novel method for presenting countdowns to make users perceive the wait time as being shorter than the actual wait time (Experiment 2) and investigated whether such countdowns can be used in realistic applications or not (Experiment 3). As a result, we found that countdowns and count-ups that were "from 250 msec shorter to 10% longer" than 3, 5, or 10 sec were perceived as 3, 5, or 10 sec, respectively, and those "from 5 to 0" (their lengths were 5 sec) that first displayed extremely shorter intervals were perceived as being shorter than their actual length (5 sec). Finally, we confirmed the applicability and effectiveness of such displays in a realistic application. Thus, we strongly argue that these findings could become indispensable knowledge for researchers in this research field to reduce users' cognitive load during wait times.
https://doi.org/10.1145/3613904.3641942
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)