We present a new approach to address the challenges associated with maintaining the functionality of triboelectric vibration sensors in smart plywood during woodworking operations involving nails and screws. The current state-of-the-art sensor design employs non-overlapping electrodes, which unfortunately leads to significant compromises in terms of signal strength and clarity, particularly in real-world scenarios that involve electromagnetic (EM) interference. To overcome these limitations, we propose a method that enables the woodworker to manually isolate short-circuited electrodes. This method facilitates the creation of sensors using overlapping electrodes, while also incorporating EM shielding, thereby resulting in a substantial improvement in the sensor's robustness when detecting user activities. To validate the effectiveness of our proposed approach, we conducted a series of experiments, which not only shed light on the drawbacks of non-overlapping electrode designs but also demonstrated the significant improvements achieved through our method.
https://doi.org/10.1145/3613904.3642304
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)