Interacting with pedestrians understandably and efficiently is one of the toughest challenges faced by autonomous vehicles (AVs) due to the limitations of current algorithms and external human-machine interfaces (eHMIs). In this paper, we design eHMIs based on gestures inspired by the most popular method of interaction between pedestrians and human drivers. Eight common gestures were selected to convey AVs' yielding or non-yielding intentions at uncontrolled crosswalks from previous literature. Through a VR experiment (N1 = 31) and a following online survey (N2 = 394), we discovered significant differences in the usability of gesture-based eHMIs compared to current eHMIs. Good gesture-based eHMIs increase the efficiency of pedestrian-AV interaction while ensuring safety. Poor gestures, however, cause misinterpretation. The underlying reasons were explored: ambiguity regarding the recipient of the signal and whether the gestures are precise, polite, and familiar to pedestrians. Based on this empirical evidence, we discuss potential opportunities and provide valuable insights into developing comprehensible gesture-based eHMIs in the future to support better interaction between AVs and other road users.
https://doi.org/10.1145/3613904.3642029
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)