The conflict between the rapid iteration demand of prototyping and the time-consuming nature of user tests has led researchers to adopt AI methods to identify usability issues. However, these AI-driven methods concentrate on evaluating the feasibility of a system, while often overlooking the influence of specified user characteristics and usage contexts. Our work proposes a tool named SimUser based on large language models (LLMs) with the Chain-of-Thought structure and user modeling method. It generates usability feedback by simulating the interaction between users and applications, which is influenced by user characteristics and contextual factors. The empirical study (48 human users and 21 designers) validated that in the context of a simple smartwatch interface, SimUser could generate heuristic usability feedback with the similarity varying from 35.7% to 100% according to the user groups and usability category. Our work provides insights into simulating users by LLM to improve future design activities.
https://doi.org/10.1145/3613904.3642481
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)