If in a Crowdsourced Data Annotation Pipeline, a GPT-4

要旨

Recent studies indicated GPT-4 outperforms online crowd workers in data labeling accuracy, notably workers from Amazon Mechanical Turk (MTurk). However, these studies were criticized for deviating from standard crowdsourcing practices and emphasizing individual workers' performances over the whole data-annotation process. This paper compared GPT-4 and an ethical and well-executed MTurk pipeline, with 415 workers labeling 3,177 sentence segments from 200 scholarly articles using the CODA-19 scheme. Two worker interfaces yielded 127,080 labels, which were then used to infer the final labels through eight label-aggregation algorithms. Our evaluation showed that despite best practices, MTurk pipeline's highest accuracy was 81.5%, whereas GPT-4 achieved 83.6%. Interestingly, when combining GPT-4's labels with crowd labels collected via an advanced worker interface for aggregation, 2 out of the 8 algorithms achieved an even higher accuracy (87.5%, 87.0%). Further analysis suggested that, when the crowd's and GPT-4's labeling strengths are complementary, aggregating them could increase labeling accuracy.

著者
Zeyu He
Pennsylvania State University, University Park, Pennsylvania, United States
Chieh-Yang Huang
Pennsylvania State University, University Park, Pennsylvania, United States
Chien-Kuang Cornelia. Ding
University of California, San Francisco, San Francisco, California, United States
Shaurya Rohatgi
University of Chicago, Chicago, Illinois, United States
Ting-Hao Kenneth. Huang
Pennsylvania State University, University Park , Pennsylvania, United States
論文URL

https://doi.org/10.1145/3613904.3642834

動画

会議: CHI 2024

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)

セッション: Working with Data B

316B
5 件の発表
2024-05-14 20:00:00
2024-05-14 21:20:00