Systematically changing the size and opacity of points on scatterplots can be used to induce more accurate perceptions of correlation by viewers. Evidence points to the mechanisms behind these effects being similar, so one may expect their combination to be additive regarding their effects on correlation estimation. We present a fully-reproducible study in which we combine techniques for influencing correlation perception to show that in reality, effects of changing point size and opacity interact in a non-additive fashion. We show that there is a great deal of scope for using visual features to change viewers’ perceptions of data visualizations. Additionally, we use our results to further interrogate the perceptual mechanisms at play when changing point size and opacity in scatterplots.
https://doi.org/10.1145/3613904.3642127
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)