Odds and Insights: Decision Quality in Exploratory Data Analysis Under Uncertainty

要旨

Recent studies have shown that users of visual analytics tools can have difficulty distinguishing robust findings in the data from statistical noise, but the true extent of this problem is likely dependent on both the incentive structure motivating their decisions, and the ways that uncertainty and variability are (or are not) represented in visualisations. In this work, we perform a crowd-sourced study measuring decision-making quality in visual analytics, testing both an explicit structure of incentives designed to reward cautious decision-making as well as a variety of designs for communicating uncertainty. We find that, while participants are unable to perfectly control for false discoveries as well as idealised statistical models such as the Benjamini-Hochberg, certain forms of uncertainty visualisations can improve the quality of participants’ decisions and lead to fewer false discoveries than not correcting for multiple comparisons. We conclude with a call for researchers to further explore visual analytics decision quality under different decision-making contexts, and for designers to directly present uncertainty and reliability information to users of visual analytics tools. The supplementary materials are available at: https://osf.io/xtsfz/.

受賞
Honorable Mention
著者
Abhraneel Sarma
Northwestern University, Evanston, Illinois, United States
Xiaoying Pu
-, Seattle, Washington, United States
Yuan Cui
Northwestern University, Evanston, Illinois, United States
Eli T. Brown
DePaul University, Chicago, Illinois, United States
Michael Correll
Northeastern University, Portland, Maine, United States
Matthew Kay
Northwestern University, Chicago, Illinois, United States
論文URL

https://doi.org/10.1145/3613904.3641995

動画

会議: CHI 2024

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)

セッション: Working with Data A

318B
5 件の発表
2024-05-13 20:00:00
2024-05-13 21:20:00