We present DeepTreeSketch, a novel AI-assisted sketching system that enables users to create realistic 3D tree models from 2D freehand sketches. Our system leverages a tree graph prediction network, TGP-Net, to learn the underlying structural patterns of trees from a large collection of 3D tree models. The TGP-Net simulates the iterative growth of botanical trees and progressively constructs the 3D tree structures in a bottom-up manner. Furthermore, our system supports a flexible sketching mode for both precise and coarse control of the tree shapes by drawing branch strokes and foliage strokes, respectively. Combined with a procedural generation strategy, users can freely control the foliage propagation with diverse and fine details. We demonstrate the expressiveness, efficiency, and usability of our system through various experiments and user studies. Our system offers a practical tool for 3D tree creation, especially for natural scenes in games, movies, and landscape applications.
https://doi.org/10.1145/3613904.3642125
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2024.acm.org/)