ElectriPop: Low-Cost, Shape-Changing Displays Using Electrostatically Inflated Mylar Sheets

要旨

We describe how sheets of metalized mylar can be cut and then “inflated” into complex 3D forms with electrostatic charge for use in digitally-controlled, shape-changing displays. This is achieved by placing and nesting various cuts, slits and holes such that mylar elements repel from one another to reach an equilibrium state. Importantly, our technique is compatible with industrial and hobbyist cutting processes, from die and laser cutting to handheld exacto-knives and scissors. Given that mylar film costs <$1 per m^2, we can create self-actuating 3D objects for just a few cents, opening new uses in low-cost consumer goods. We describe a design vocabulary, interactive simulation tool, fabrication guide, and proof-of-concept electrostatic actuation hardware. We detail our technique's performance metrics along with qualitative feedback from a design study. We present numerous examples generated using our pipeline to illustrate the rich creative potential of our method.

著者
Cathy Mengying Fang
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
Jianzhe Gu
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
Lining Yao
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
Chris Harrison
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
論文URL

https://dl.acm.org/doi/abs/10.1145/3491102.3501837

動画

会議: CHI 2022

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)

セッション: Shape Displays

290
5 件の発表
2022-05-05 01:15:00
2022-05-05 02:30:00