COVID-19 exposure-notification apps have struggled to gain adoption. Existing literature posits as potential causes of this low adoption: privacy concerns, insufficient data transparency, and the type of appeal – collective- vs. individual-good – used to frame the app. As policy guidance suggests using tailored advertising to evaluate the effects of these factors, we present the first field study of COVID-19 contact tracing apps with a randomized, control trial of 14 different advertisements for CovidDefense, Louisiana’s COVID-19 exposure-notification app. We find that all three hypothesized factors -- privacy, data transparency, and appeals framing -- relate to app adoption, even when controlling for age, gender, and community density. Our results offer (1) the first field evidence supporting the use of collective-good appeals, (2) nuanced findings regarding the efficacy of data and privacy transparency, the effects of which are moderated by appeal framing and potential users’ demographics, and (3) field-evidence-based guidance for future efforts to encourage pro-social health technology adoption.
https://dl.acm.org/doi/abs/10.1145/3491102.3501869
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)