It is challenging for customers to select appearance building products (e.g., skincare products, weight loss programs) that suit them personally as such products usually demonstrate efficacy only after long-term usage. Although e-retailers generally provide product descriptions or other customers' reviews, users often find it hard to relate to their own situations. In this work, we proposed a pipeline to display envisioned users' appearance after long-term use of appearance building products to deliver their efficacy on each individual visually. We selected skincare as a case and developed SkincareMirror which predicts skincare effects on users' facial images by analyzing product function labels, efficacy ratings, and skin models' images. The results of a between-subjects study (N=48) show that (1) SkincareMirror outperforms the baseline shopping site in terms of perceived usability, usefulness, user satisfaction and helps users select products faster; (2) SkincareMirror is especially effective to males and users with limited product domain knowledge.
https://dl.acm.org/doi/abs/10.1145/3491102.3517659
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)