People consider recommendations from AI systems in diverse domains ranging from recognizing tumors in medical images to deciding which shoes look cute with an outfit. Implicit in the decision process is the perceived expertise of the AI system. In this paper, we investigate how people trust and rely on an AI assistant that performs with different levels of expertise relative to the person, ranging from completely overlapping expertise to perfectly complementary expertise. Through a series of controlled online lab studies where participants identified objects with the help of an AI assistant, we demonstrate that participants were able to perceive when the assistant was an expert or non-expert within the same task and calibrate their reliance on the AI to improve team performance. We also demonstrate that communicating expertise through the linguistic properties of the explanation text was effective, where embracing language increased reliance and distancing language reduced reliance on AI.
https://dl.acm.org/doi/abs/10.1145/3491102.3517791
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)