Saliency methods --- techniques to identify the importance of input features on a model's output --- are a common step in understanding neural network behavior. However, interpreting saliency requires tedious manual inspection to identify and aggregate patterns in model behavior, resulting in ad hoc or cherry-picked analysis. To address these concerns, we present Shared Interest: metrics for comparing model reasoning (via saliency) to human reasoning (via ground truth annotations). By providing quantitative descriptors, Shared Interest enables ranking, sorting, and aggregating inputs, thereby facilitating large-scale systematic analysis of model behavior. We use Shared Interest to identify eight recurring patterns in model behavior, such as cases where contextual features or a subset of ground truth features are most important to the model. Working with representative real-world users, we show how Shared Interest can be used to decide if a model is trustworthy, uncover issues missed in manual analyses, and enable interactive probing.
https://dl.acm.org/doi/abs/10.1145/3491102.3501965
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)