Informing Age-Appropriate AI: Examining Principles and Practices of AI for Children

要旨

AI systems are becoming increasingly pervasive within children's devices, apps, and services. However, it is not yet well-understood how risks and ethical considerations of AI relate to children. This paper makes three contributions to this area: first, it identifies ten areas of alignment between general AI frameworks and codes for age-appropriate design for children. Then, to understand how such principles relate to real application contexts, we conducted a landscape analysis of children's AI systems, via a systematic literature review including 188 papers. This analysis revealed a wide assortment of applications, and that most systems' designs addressed only a small subset of principles among those we identified. Finally, we synthesised our findings in a framework to inform a new ``Code for Age-Appropriate AI'', which aims to provide timely input to emerging policies and standards, and inspire increased interactions between the AI and child-computer interaction communities.

受賞
Honorable Mention
著者
Ge Wang
University of Oxford, Oxford, United Kingdom
Jun Zhao
University of Oxford, Oxford, Oxfordshire, United Kingdom
Max Van Kleek
University of Oxford, Oxford, Oxfordshire, United Kingdom
Nigel Shadbolt
University of Oxford, Oxford, United Kingdom
論文URL

https://dl.acm.org/doi/abs/10.1145/3491102.3502057

動画

会議: CHI 2022

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)

セッション: Interacting with Smart Technology

386
5 件の発表
2022-05-03 23:15:00
2022-05-04 00:30:00