An extensive body of work in visual analytics has examined how users conduct analyses in scientific and academic settings, identifying and categorizing user goals and the actions they undertake to achieve them. However, most of this work has studied the analysis process in simulated or isolated environments, leading to a gap in connecting these findings to large-scale business (enterprise) contexts, where visual analysis is most needed to make sense of the large amounts of data being generated. In this work, we conducted digital "field" observations to understand how users conduct visual analyses in an enterprise setting, where they operate within a large ecosystem of systems and people. From these observations, we identified four common objectives, six recurring visual investigation patterns, and five emergent themes. We also performed a quantitative analysis of logs over 2530 user sessions from a second visual analysis product to validate that our patterns were not product-specific.
https://dl.acm.org/doi/abs/10.1145/3491102.3517445
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)