The COVID-19 pandemic continues to affect the daily life of college students, impacting their social life, education, stress levels and overall mental well-being. We study and assess behavioral changes of N=180 undergraduate college students one year prior to the pandemic as a baseline and then during the first year of the pandemic using mobile phone sensing and behavioral inference. We observe that certain groups of students experience the pandemic very differently. Furthermore, we explore the association of self-reported COVID-19 concern with students' behavior and mental health. We find that heightened COVID-19 concern is correlated with increased depression, anxiety and stress. We evaluate the performance of different deep learning models to classify student COVID-19 concerns with an AUROC and F1 score of 0.70 and 0.71, respectively. Our study spans a two-year period and provides a number of important insights into the life of college students during this period.
https://dl.acm.org/doi/abs/10.1145/3491102.3502043
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)