The popularity of task-oriented chatbots is constantly growing, but smooth conversational progress with them remains profoundly challenging. In recent years, researchers have argued that chatbot systems should include guidance for users on how to converse with them. Nevertheless, empirical evidence about what to place in such guidance, and when to deliver it, has been lacking. Using a mixed-methods approach that integrates results from a between-subjects experiment and a reflection session, this paper compares the ef- fectiveness of eight combinations of two guidance types (example-based and rule-based) at four guidance timings (service-onboarding, task-intro, after-failure, and upon-request), as measured by users’ task performance, improvement on subsequent tasks, and subjec- tive experience. It establishes that each guidance type and timing has particular strengths and weaknesses, thus that each type/timing combination has a unique impact on performance metrics, learning outcomes, and user experience. On that basis, it presents guidance-design recommendations for future task-oriented chatbots.
https://dl.acm.org/doi/abs/10.1145/3491102.3501941
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)