Electronic health records in critical care medicine offer unprecedented opportunities for clinical reasoning and decision making. Paradoxically, these data-rich environments have also resulted in clinical decision support systems (CDSSs) that fit poorly into clinical contexts, and increase health workers cognitive load. In this paper, we introduce a novel approach to designing CDSSs that are embedded in clinical workflows, by presenting problem-based curated data views tailored for problem-driven discovery, team communication, and situational awareness. We describe the design and evaluation of one such CDSS, In-Sight, that embodies our approach and addresses the clinical problem of monitoring critically ill pediatric patients. Our work is the result of a co-design process, further informed by empirical data collected through formal usability testing, focus groups, and a simulation study with domain experts. We discuss the potential and limitations of our approach, and share lessons learned in our iterative co-design process.
https://dl.acm.org/doi/abs/10.1145/3491102.3501887
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2022.acm.org/)