We propose a novel type of olfactory device that creates a stereo-smell experience, i.e., directional information about the location of an odor, by rendering the readings of external odor sensors as trigeminal sensations using electrical stimulation of the user’s nasal septum. The key is that the sensations from the trigeminal nerve, which arise from nerve-endings in the nose, are perceptually fused with those of the olfactory bulb (the brain region that senses smells). As such, we propose that electrically stimulating the trigeminal nerve is an ideal candidate for stereo-smell augmentation/substitution that, unlike other approaches, does not require implanted electrodes in the olfactory bulb. To realize this, we engineered a self-contained device that users wear across their nasal septum. Our device outputs by stimulating the user’s trigeminal nerve using electrical impulses with variable pulse-widths; and it inputs by sensing the user’s inhalations using a photoreflector. It measures 10x23 mm and communicates with external gas sensors using Bluetooth. In our user study, we found the key electrical waveform parameters that enable users to feel an odor’s intensity (absolute electric charge) and direction (phase order and net charge). In our second study, we demonstrated that participants were able to localize a virtual smell source in the room by using our prototype without any previous training. Using these insights, our device enables expressive trigeminal sensations and could function as an assistive device for people with anosmia, who are unable to smell.
https://doi.org/10.1145/3411764.3445300
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2021.acm.org/)