Documents such as presentations, instruction manuals, and research papers are disseminated using various file formats, many of which barely support the incorporation of interactive content. To address this lack of interactivity, we present Chameleon, a system-wide tool that combines computer vision algorithms used for image identification with an open database format to allow for the layering of dynamic content. Using Chameleon, static documents can be easily upgraded by layering user-generated interactive content on top of static images, all while preserving the original static document format and without modifying existing applications. We describe the development of Chameleon, including the design and evaluation of vision-based image replacement algorithms, the new document-creation pipeline as well as a user study evaluating Chameleon.
https://doi.org/10.1145/3313831.3376559
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)