Large Language Models (LLMs) offer promising opportunities in mental health domains, although their inherent complexity and low controllability elicit concern regarding their applicability in clinical settings. We present MindfulDiary, an LLM-driven journaling app that helps psychiatric patients document daily experiences through conversation. Designed in collaboration with mental health professionals, MindfulDiary takes a state-based approach to safely comply with the experts' guidelines while carrying on free-form conversations. Through a four-week field study involving 28 patients with major depressive disorder and five psychiatrists, we examined how MindfulDiary facilitates patients' journaling practice and clinical care. The study revealed that MindfulDiary supported patients in consistently enriching their daily records and helped clinicians better empathize with their patients through an understanding of their thoughts and daily contexts. Drawing on these findings, we discuss the implications of leveraging LLMs in the mental health domain, bridging the technical feasibility and their integration into clinical settings.
https://doi.org/10.1145/3613904.3642937
Advances in language modeling have paved the way for novel human-AI co-writing experiences. This paper explores how varying levels of scaffolding from large language models (LLMs) shape the co-writing process. Employing a within-subjects field experiment with a Latin square design, we asked participants (N=131) to respond to argumentative writing prompts under three randomly sequenced conditions: no AI assistance (control), next-sentence suggestions (low scaffolding), and next-paragraph suggestions (high scaffolding). Our findings reveal a U-shaped impact of scaffolding on writing quality and productivity (words/time). While low scaffolding did not significantly improve writing quality or productivity, high scaffolding led to significant improvements, especially benefiting non-regular writers and less tech-savvy users. No significant cognitive burden was observed while using the scaffolded writing tools, but a moderate decrease in text ownership and satisfaction was noted. Our results have broad implications for the design of AI-powered writing tools, including the need for personalized scaffolding mechanisms.
https://doi.org/10.1145/3613904.3642134
The use of Large Language Models (LLMs) for writing has sparked controversy both among readers and writers. On one hand, writers are concerned that LLMs will deprive them of agency and ownership, and readers are concerned about spending their time on text generated by soulless machines. On the other hand, AI-assistance can improve writing as long as writers can conform to publisher policies, and as long as readers can be assured that a text has been verified by a human. We argue that a system that captures the provenance of interaction with an LLM can help writers retain their agency, conform to policies, and communicate their use of AI to publishers and readers transparently. Thus we propose HaLLMark, a tool for visualizing the writer's interaction with the LLM. We evaluated HaLLMark with 13 creative writers, and found that it helped them retain a sense of control and ownership of the text.
https://doi.org/10.1145/3613904.3641895
Exploring alternative ideas by rewriting text is integral to the writing process. State-of-the-art Large Language Models (LLMs) can simplify writing variation generation. However, current interfaces pose challenges for simultaneous consideration of multiple variations: creating new variations without overwriting text can be difficult, and pasting them sequentially can clutter documents, increasing workload and disrupting writers' flow. To tackle this, we present ABScribe, an interface that supports rapid, yet visually structured, exploration and organization of writing variations in human-AI co-writing tasks. With ABScribe, users can swiftly modify variations using LLM prompts, which are auto-converted into reusable buttons. Variations are stored adjacently within text fields for rapid in-place comparisons using mouse-over interactions on a popup toolbar. Our user study with 12 writers shows that ABScribe significantly reduces task workload (d = 1.20, p < 0.001), enhances user perceptions of the revision process (d = 2.41, p < 0.001) compared to a popular baseline workflow, and provides insights into how writers explore variations using LLMs.
https://doi.org/10.1145/3613904.3641899