Large Language Models (LLMs) may offer transformative opportunities for text input, especially for physically demanding modalities like handwriting. We studied a form of abbreviated handwriting by designing, developing, and evaluating a prototype, named SkipWriter, that converts handwritten strokes of a variable-length prefix-based abbreviation (e.g. "ho a y" as handwritten strokes) into the intended full phrase (e.g., "how are you" in the digital format) based on the preceding context. SkipWriter consists of an in-production handwriting recognizer and an LLM fine-tuned on this task. With flexible pen input, SkipWriter allows the user to add and revise prefix strokes when predictions do not match the user's intent. An user evaluation demonstrated a 60% reduction in motor movements with an average speed of 25.78 WPM. We also showed that this reduction is close to the ceiling of our model in an offline simulation.
https://doi.org/10.1145/3654777.3676423
ACM Symposium on User Interface Software and Technology