Existing invisible object tagging methods are prone to low resolution, which impedes tracking performance. We present BrightMarker, a fabrication method that uses fluorescent filaments to embed easily trackable markers in 3D printed color objects. By using an infrared-fluorescent filament that "shifts" the wavelength of the incident light, our optical detection setup filters out all the noise to only have the markers present in the infrared camera image. The high contrast of the markers allows us to track them robustly regardless of the moving objects’ surface color. We built a software interface for automatically embedding these markers for the input object geometry, and hardware modules that can be attached to existing mobile devices and AR/VR headsets. Our image processing pipeline robustly localizes the markers in real-time from the captured images. BrightMarker can be used in a variety of applications, such as custom fabricated wearables for motion capture, tangible interfaces for AR/VR, rapid product tracking, and privacy-preserving night vision. BrightMarker exceeds the detection rate of state-of-the-art invisible marking, and even small markers (1"x1") can be tracked at distances exceeding 2m.
https://doi.org/10.1145/3586183.3606758
ACM Symposium on User Interface Software and Technology