Audio-visual learning seeks to enhance the computer’s multi-modal perception leveraging the correlation between the auditory and visual modalities. Despite their many useful downstream tasks, such as video retrieval, AR/VR, and accessibility, the performance and adoption of existing audio-visual models have been impeded by the availability of high quality datasets. Annotating audio-visual datasets is laborious, expensive, and time consuming. To address this challenge, we designed and developed an efficient audio visual annotation tool called Peanut. Peanut’s human-AI collaborative pipeline separates the multi-modal task into two single-modal tasks, and utilizes state-of-the-art object detection and sound-tagging models to reduce the annotators’ effort to process each frame and the number of manually-annotated frames needed. A within-subject user study with 20 participants found that Peanut can significantly accelerate the audio-visual data annotation process while maintaining high annotation accuracy.
https://doi.org/10.1145/3586183.3606776
ACM Symposium on User Interface Software and Technology