External communication of automated vehicles is proposed to replace driver-pedestrian communication in ambiguous crossing situations. So far, research has focused on simpler scenarios with one attentive pedestrian and one automated vehicle. This virtual reality study (N=115) investigates a more complex scenario with other crossing pedestrians, a distracting task on the smartphone, and external communication by the automated vehicle. Interaction effects were found for crossing duration, gaze behavior, and subjective measures. For attentive pedestrians, the external communication resulted in shorter crossing durations, higher perceived safety, as well as lower perceived criticality, cognitive workload, and effort. These positive effects were not found when pedestrians were distracted. Instead, distracted pedestrians benefited from other crossing pedestrians because they looked less at the stopping vehicle, felt safer, perceived the situation as less critical, and reported lower cognitive workload and effort. Pedestrians initiated crossings earlier with a group or external communication and later with a smartphone.
https://doi.org/10.1145/3544548.3581303
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2023.acm.org/)