GVQA: Learning to Answer Questions about Graphs with Visualizations via Knowledge Base

要旨

Graphs are common charts used to represent the topological relationship between nodes. It is a powerful tool for data analysis and information retrieval tasks involve asking questions about graphs. In formative study, we found that questions for graphs are not only about the relationship of nodes but also about the properties of graph elements. We propose a pipeline to answer natural language questions about graph visualizations and generate visual answers. We first extract the data from graphs and convert them into GML format. We design data structures to encode graph information and convert them into an knowledge base. We then extract topic entities from questions. We feed questions, entities and knowledge bases into our question-answer model to obtain the SPARQL queries for textual answers. Finally, we design a module to present the answers visually. A user study demonstrates that these visual and textual answers are useful, credible and and transparent.

著者
Sicheng Song
East China Normal University, Shanghai, China
Juntong Chen
East China Normal University, Shanghai, Shanghai, China
Chenhui Li
East China Normal University, Shanghai, China
Changbo Wang
East China Normal University, Shanghai, China
論文URL

https://doi.org/10.1145/3544548.3581067

動画

会議: CHI 2023

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2023.acm.org/)

セッション: Making Sense & Decisions with Visualization

Hall D
6 件の発表
2023-04-26 23:30:00
2023-04-27 00:55:00