Enabling students to dynamically transition between individual and collaborative learning activities has great potential to support better learning. We explore how technology can support teachers in orchestrating dynamic transitions during class. Working with five teachers and 199 students over 22 class sessions, we conducted classroom-based prototyping of a co-orchestration technology ecosystem that supports the dynamic pairing of students working with intelligent tutoring systems. Using mixed-methods data analysis, we study the resulting observed classroom dynamics, and how teachers and students perceived and experienced dynamic transitions as supported by our technology. We discover a potential tension between teachers' and students' preferred level of control: students prefer a degree of control over the dynamic transitions that teachers are hesitant to grant. Our study reveals design implications and challenges for future human-AI co-orchestration in classroom use, bringing us closer to realizing the vision of highly-personalized smart classrooms that address the unique needs of each student.
https://doi.org/10.1145/3544548.3581398
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2023.acm.org/)