Spatial augmented reality (SAR) can extend desktop computing out of the monitor and into our surroundings, but extending the standard style of mouse input is challenging due to real-world geometry irregularity, gaps, and occlusion. We identify two general approaches for controlling a mouse cursor in SAR: perspective-based approaches based on raycasting, such as Nacenta et. al's Perspective Cursor, and geometry-based approaches that closely associate cursor movement with surface topology. For the latter, we introduce Everywhere Cursor, a geometry-based approach for indirect mouse cursor control for complex 3D surface geometry in SAR. A controlled experiment compares approaches. Results show the geometry-based Everywhere Cursor improves accuracy and precision by 29% to 60% on average in a tracing task, but when traversing long distances, the perspective-based Perspective Cursor and Raycasting techniques are 22% to 49% faster, albeit with 4% to 10% higher error rates.
https://doi.org/10.1145/3544548.3580849
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2023.acm.org/)