Enabling Conversational Interaction with Mobile UI using Large Language Models

要旨

Conversational agents show the promise to allow users to interact with mobile devices using language. However, to perform diverse UI tasks with natural language, developers typically need to create separate datasets and models for each specific task, which is expensive and effort-consuming. Recently, pre-trained large language models (LLMs) have been shown capable of generalizing to various downstream tasks when prompted with a handful of examples from the target task. This paper investigates the feasibility of enabling versatile conversational interactions with mobile UIs using a single LLM. We designed prompting techniques to adapt an LLM to mobile UIs. We experimented with four important modeling tasks that address various scenarios in conversational interaction. Our method achieved competitive performance on these challenging tasks without requiring dedicated datasets and training, offering a lightweight and generalizable approach to enable language-based mobile interaction.

著者
Bryan Wang
University of Toronto, Toronto, Ontario, Canada
Gang Li
Google Research, Mountain View, California, United States
Yang Li
Google Research, Mountain View, California, United States
論文URL

https://doi.org/10.1145/3544548.3580895

動画

会議: CHI 2023

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2023.acm.org/)

セッション: Large Language Models

Hall C
6 件の発表
2023-04-25 23:30:00
2023-04-26 00:55:00