Head movement is widely used as a uniform type of input for human-computer interaction. However, there are fundamental differences between head movements coupled with gaze in support of our visual system, and head movements performed as gestural expression. Both Head-Gaze and Head Gestures are of utility for interaction but differ in their affordances. To facilitate the treatment of Head-Gaze and Head Gestures as separate types of input, we developed HeadBoost as a novel classifier, achieving high accuracy in classifying gaze-driven versus gestural head movement (F1-Score: 0.89). We demonstrate the utility of the classifier with three applications: gestural input while avoiding unintentional input by Head-Gaze; target selection with Head-Gaze while avoiding Midas Touch by head gestures; and switching of cursor control between Head-Gaze for fast positioning and Head Gesture for refinement. The classification of Head-Gaze and Head Gesture allows for seamless head-based interaction while avoiding false activation.
https://doi.org/10.1145/3544548.3581201
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2023.acm.org/)