From ride-hailing to car rentals, consumers are often presented with eco-friendly options. Beyond highlighting a "green" vehicle and CO2 emissions, CO2 equivalencies have been designed to provide understandable amounts; we ask which equivalencies will lead to eco-friendly decisions. We conducted five ride-hailing scenario surveys where participants picked between regular and eco-friendly options, testing equivalencies, social features, and valence-based interventions. Further, we tested a car-rental embodiment to gauge how an individual (needing a car for several days) might behave versus the immediate ride-hailing context. We find that participants are more likely to choose green rides when presented with additional information about emissions; CO2 by weight was found to be the most effective. Further, we found that information framing - be it individual or collective footprint, positive or negative valence - had an impact on participants’ choices. Finally, we discuss how our findings inform the design of effective interventions for reducing car-based carbon-emissions.
https://doi.org/10.1145/3544548.3580675
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2023.acm.org/)