Smartwatches offer powerful features, but their small touchscreens limit the expressiveness of the input that can be achieved. To address this issue, we present, and open-source, the first sonar-based around-device input on an unmodified consumer smartwatch. We achieve this using a fine-grained, one-dimensional sonar-based finger-tracking system. In addition, we use this system to investigate the fundamental issue of how to trigger selections during around-device smartwatch input through two studies. The first examines the methods of double-crossing, dwell, and finger tap in a binary task, while the second considers a subset of these designs in a multi-target task and in the presence and absence of haptic feedback. Results showed double-crossing was optimal for binary tasks, while dwell excelled in multi-target scenarios, and haptic feedback enhanced comfort but not performance. These findings offer design insights for future around-device smartwatch interfaces that can be directly deployed on today’s consumer hardware.
https://dl.acm.org/doi/10.1145/3706598.3714308
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2025.acm.org/)