Self project-based learning (SPBL) is a popular learning style where learners follow tutorials and build projects by themselves. SPBL combines project-based learning’s benefit of being engaging and effective with the flexibility of self-learning. However, insufficient guidance and support during SPBL may lead to unsatisfactory learning experiences and outcomes. While LLM chatbots (e.g., ChatGPT) could potentially serve as SPBL tutors, we have yet to see an SPBL platform with responsible and systematic LLM integration. To address this gap, we present AutoPBL, an interactive learning platform for SPBL learners. We examined human PBL tutors’ roles through formative interviews to inform our design. AutoPBL features an LLM-guided learning process with checkpoint questions and in-context Q&A. In a user study where 29 beginners learned machine learning through entry-level projects, we found that AutoPBL effectively improves learning outcomes and elicits better learning behavior and metacognition by clarifying current priorities and providing timely assistance.
https://dl.acm.org/doi/10.1145/3706598.3714261
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2025.acm.org/)