Doing the Feminist Work in AI: Reflections from an AI Project in Latin America

要旨

The contemporary AI development landscape is dominated by big corporations, lacks diversity, and mostly centres the Global North, or applies extractivist logics in the South. This paper showcases a feminist process of AI development from Latin America, where we created an interactive, AI-powered tool that helps criminal court officers open justice data, addressing a data gap on gender-based violence. Through a collaborative autoethnography, drawing from Latin American feminisms, we unpack and visibilize the feminist work that was required, as a crucial step to counter hegemonic narratives. Foregrounding the subjugated knowledges of our experiences, we offer a concrete example of a feminist approach to AI development grounded in practice. With this, we aim to critically inspire those who consider building technology in service of social justice causes, or who choose to build AI systems otherwise.

受賞
Best Paper
著者
Marianela Ciolfi Felice
KTH Royal Institute of Technology, Stockholm, Sweden
Ivana Feldfeber
DataGénero - Observatorio de Datos con Perspectiva de Género, Buenos Aires, Argentina
Carolina Glasserman Apicella
Universidad Nacional de San Martín, Buenos Aires, Argentina
Yasmín Belén Quiroga
DataGénero - Observatorio de Datos con Perspectiva de Género, Buenos Aires, Argentina
Julián Ansaldo
Collective AI, Buenos Aires, Argentina
Luciano Lapenna
Universidad Tecnológica Nacional , Buenos Aires, Argentina
Santiago Bezchinsky
Universidad de Buenos Aires, Buenos Aires, Argentina
Raul Barriga Rubio
Collective AI, Buenos Aires, Argentina
Mailén García
Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
DOI

10.1145/3706598.3713681

論文URL

https://dl.acm.org/doi/10.1145/3706598.3713681

動画

会議: CHI 2025

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2025.acm.org/)

セッション: Stereotypes and Gender

G402
7 件の発表
2025-04-29 01:20:00
2025-04-29 02:50:00
日本語まとめ
読み込み中…