In 3D design, specifying design objectives and visualizing complex shapes through text alone proves to be a significant challenge. Although advancements in 3D GenAI have significantly enhanced part assembly and the creation of high-quality 3D designs, many systems still to dynamically generate and edit design elements based on the shape parameters. To bridge this gap, we propose GenPara, an interactive 3D design editing system that leverages text-conditional shape parameters of part-aware 3D designs and visualizes design space within the Exploration Map and Design Versioning Tree. Additionally, among the various shape parameters generated by LLM, the system extracts and provides design outcomes within the user's regions of interest based on Bayesian inference. A user study (N = 16) revealed that GenPara enhanced the comprehension and management of designers with text-conditional shape parameters, streamlining design exploration and concretization. This improvement boosted efficiency and creativity of the 3D design process.
https://dl.acm.org/doi/10.1145/3706598.3713502
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2025.acm.org/)