Automated Urban Air Mobility (UAM) can improve passenger transportation and reduce congestion, but its success depends on passenger trust. While initial research addresses passengers' information needs, questions remain about how to simulate air taxi flights and how these simulations impact users and interface requirements. We conducted a between-subjects study (N=40), examining the influence of motion fidelity in Virtual-Reality-simulated air taxi flights on user effects and interface design. Our study compared simulations with and without motion cues using a 3-Degrees-of-Freedom motion chair. Optimizing the interface design across six objectives, such as trust and mental demand, we used multi-objective Bayesian optimization to determine the most effective design trade-offs. Our results indicate that motion fidelity decreases users' trust, understanding, and acceptance, highlighting the need to consider motion fidelity in future UAM studies to approach realism. However, minimal evidence was found for differences or equality in the optimized interface designs, suggesting personalized interface designs.
https://dl.acm.org/doi/10.1145/3706598.3713288
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2025.acm.org/)