Cody: An AI-Based System to Semi-Automate Coding for Qualitative Research

要旨

Qualitative research can produce a rich understanding of a phenomenon but requires an essential and strenuous data annotation process known as coding. Coding can be repetitive and time-consuming, particularly for large datasets. Existing AI-based approaches for partially automating coding, like supervised machine learning (ML) or explicit knowledge represented in code rules, require high technical literacy and lack transparency. Further, little is known about the interaction of researchers with AI-based coding assistance. We introduce Cody, an AI-based system that semi-automates coding through code rules and supervised ML. Cody supports researchers with interactively (re)defining code rules and uses ML to extend coding to unseen data. In two studies with qualitative researchers, we found that (1) code rules provide structure and transparency, (2) explanations are commonly desired but rarely used, (3) suggestions benefit coding quality rather than coding speed, increasing the intercoder reliability, calculated with Krippendorff’s Alpha, from 0.085 (MAXQDA) to 0.33 (Cody).

著者
Tim Rietz
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Alexander Maedche
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
DOI

10.1145/3411764.3445591

論文URL

https://doi.org/10.1145/3411764.3445591

動画

会議: CHI 2021

The ACM CHI Conference on Human Factors in Computing Systems (https://chi2021.acm.org/)

セッション: Computational Human-AI Conversation

[A] Paper Room 02, 2021-05-11 17:00:00~2021-05-11 19:00:00 / [B] Paper Room 02, 2021-05-12 01:00:00~2021-05-12 03:00:00 / [C] Paper Room 02, 2021-05-12 09:00:00~2021-05-12 11:00:00
Paper Room 02
14 件の発表
2021-05-11 17:00:00
2021-05-11 19:00:00
日本語まとめ
読み込み中…