Head-Mounted Display based Virtual Reality is proliferating. However, Visually Induced Motion Sickness (VIMS), which prevents many from using VR without discomfort, bars widespread adoption. Prior work has shown that limiting the Field of View (FoV) can reduce VIMS at a cost of also reducing presence. Systems that dynamically adjust a user's FoV may be able to balance these concerns. To explore this idea, we present a technique for standard 360º video that shrinks FoVs only during VIMS inducing scenes. It uses Visual Simultaneous Localization and Mapping and peripheral optical flow to compute camera movements and reduces FoV during rapid motion or optical flow. A user study (N=23) comparing 360º video with unrestricted-FoVs (90º), reduced fixed-FoVs (40º) and dynamic-FoVs (40º-90º) revealed that dynamic-FoVs mitigate VIMS while maintaining presence. We close by discussing the user experience of dynamic-FoVs and recommendations for how they can help make VR comfortable and immersive for all.
https://doi.org/10.1145/3411764.3445499
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2021.acm.org/)