Virtual reality (VR) multiplayer games increasingly use asymmetry (e.g., differences in a person’s capability or the user interface) and resulting interdependence between players to create engagement even when one player has no access to a head-mounted display (HMD). Previous work shows this enhances player experience (PX). Until now, it remains unclear whether and how an asymmetric game design with interdependences creates comparably enjoyable PX for both an HMD and a non-HMD player. In this work, we designed and implemented an asymmetric VR game (different in its user interface) with two types of interdependence: \textit{strategic} (difference in game information/player capability) and \textit{biometric} (difference in player’s biometric influence). Our mixed-methods user study (N=30) shows that asymmetries positively impact PX for both player roles, that interdependence strongly affects players’ perception of agency, and that biometric feedback---while subjective---is a valuable game mechanic.
https://doi.org/10.1145/3411764.3445492
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2021.acm.org/)