The ability to monitor audience reactions is critical when delivering presentations. However, current videoconferencing platforms offer limited solutions to support this. This work leverages recent advances in affect sensing to capture and facilitate communication of relevant audience signals. Using an exploratory survey (N=175), we assessed the most relevant audience responses such as confusion, engagement, and head-nods. We then implemented AffectiveSpotlight, a Microsoft Teams bot that analyzes facial responses and head gestures of audience members and dynamically spotlights the most expressive ones. In a within-subjects study with 14~groups (N=117), we observed that the system made presenters significantly more aware of their audience, speak for a longer period of time, and self-assess the quality of their talk more similarly to the audience members, compared to two control conditions (randomly-selected spotlight and default platform UI). We provide design recommendations for future affective interfaces for online presentations based on feedback from the study.
https://doi.org/10.1145/3411764.3445235
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2021.acm.org/)