Alerting customers on suspected online-payment fraud and persuade them to terminate transactions is increasingly requested with the rapid growth of digital finance worldwide. We explored the feasibility of using a conversational agent (CA) to fulfill this request. Shing, a voice-based CA, proactively initializes and repairs the conversation with empathetical communication skills in order to alert customers when a suspected online-payment fraud is detected, collects important information for fraud scrutiny and persuades customers to terminate the transaction once the fraud is confirmed. We evaluated our system by comparing it with a rule-based CA with regards to customer response and perceptions in a real-world context where our systems took 144,795 phone calls in total in which 83,019 (57.3%) natural breakdowns happened. Results showed that more customers stopped risky transactions after conversing with Shing. They seemed more willing to converse with Shing for more dialogue turns and provide transaction details. Our work presents practical implications for the design of proactive CA.
https://doi.org/10.1145/3411764.3445129
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2021.acm.org/)