The advancement of text-to-speech (TTS) voices and a rise of commercial TTS platforms allow people to easily experience TTS voices across a variety of technologies, applications, and form factors. As such, we evaluated TTS voices for long-form content: not individual words or sentences, but voices that are pleasant to listen to for several minutes at a time. We introduce a method using a crowdsourcing platform and an online survey to evaluate voices based on listening experience, perception of clarity and quality, and comprehension. We evaluated 18 TTS voices, three human voices, and a text-only control condition. We found that TTS voices are close to rivaling human voices, yet no single voice outperforms the others across all evaluation dimensions. We conclude with considerations for selecting text-to-speech voices for long-form content.
https://doi.org/10.1145/3313831.3376789
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)